A Literature Review of Literature Reviews in Pattern Analysis and Machine Intelligence
- URL: http://arxiv.org/abs/2402.12928v5
- Date: Sat, 14 Dec 2024 14:04:28 GMT
- Title: A Literature Review of Literature Reviews in Pattern Analysis and Machine Intelligence
- Authors: Penghai Zhao, Xin Zhang, Jiayue Cao, Ming-Ming Cheng, Jian Yang, Xiang Li,
- Abstract summary: Pattern Analysis and Machine Intelligence (PAMI) has led to numerous literature reviews aimed at collecting and fragmented information.
This paper presents a thorough analysis of these literature reviews within the PAMI field.
We try to address three core research questions: (1) What are the prevalent structural and statistical characteristics of PAMI literature reviews; (2) What strategies can researchers employ to efficiently navigate the growing corpus of reviews; and (3) What are the advantages and limitations of AI-generated reviews compared to human-authored ones.
- Score: 55.33653554387953
- License:
- Abstract: The rapid advancements in Pattern Analysis and Machine Intelligence (PAMI) have led to an overwhelming expansion of scientific knowledge, spawning numerous literature reviews aimed at collecting and synthesizing fragmented information. This paper presents a thorough analysis of these literature reviews within the PAMI field, and tries to address three core research questions: (1) What are the prevalent structural and statistical characteristics of PAMI literature reviews? (2) What strategies can researchers employ to efficiently navigate the growing corpus of reviews? (3) What are the advantages and limitations of AI-generated reviews compared to human-authored ones? To address the first research question, we begin with a narrative overview to highlight common preferences in composing PAMI reviews, followed by a statistical analysis to quantitatively uncover patterns in these preferences. Our findings reveal several key insights. First, fewer than 20% of PAMI reviews currently comply with PRISMA standards, although this proportion is gradually increasing. Second, there is a moderate positive correlation between the quality of references and the scholarly impact of reviews, emphasizing the importance of reference selection. To further assist researchers in efficiently managing the rapidly growing number of literature reviews, we introduce four novel, real-time, article-level bibliometric indicators that facilitate the screening of numerous reviews. Finally, our comparative analysis reveals that AI-generated reviews currently fall short of human-authored ones in accurately evaluating the academic significance of newly published articles and integrating rich visual elements, which limits their practical utility. Overall, this study provides a deeper understanding of PAMI literature reviews by uncovering key trends, evaluating current practices, and highlighting areas for future improvement.
Related papers
- Transforming Science with Large Language Models: A Survey on AI-assisted Scientific Discovery, Experimentation, Content Generation, and Evaluation [58.064940977804596]
A plethora of new AI models and tools has been proposed, promising to empower researchers and academics worldwide to conduct their research more effectively and efficiently.
Ethical concerns regarding shortcomings of these tools and potential for misuse take a particularly prominent place in our discussion.
arXiv Detail & Related papers (2025-02-07T18:26:45Z) - Generative Adversarial Reviews: When LLMs Become the Critic [1.2430809884830318]
We introduce Generative Agent Reviewers (GAR), leveraging LLM-empowered agents to simulate faithful peer reviewers.
Central to this approach is a graph-based representation of manuscripts, condensing content and logically organizing information.
Our experiments demonstrate that GAR performs comparably to human reviewers in providing detailed feedback and predicting paper outcomes.
arXiv Detail & Related papers (2024-12-09T06:58:17Z) - Automating Bibliometric Analysis with Sentence Transformers and Retrieval-Augmented Generation (RAG): A Pilot Study in Semantic and Contextual Search for Customized Literature Characterization for High-Impact Urban Research [2.1728621449144763]
Bibliometric analysis is essential for understanding research trends, scope, and impact in urban science.
Traditional methods, relying on keyword searches, often fail to uncover valuable insights not explicitly stated in article titles or keywords.
We leverage Generative AI models, specifically transformers and Retrieval-Augmented Generation (RAG), to automate and enhance bibliometric analysis.
arXiv Detail & Related papers (2024-10-08T05:13:27Z) - LLMs Assist NLP Researchers: Critique Paper (Meta-)Reviewing [106.45895712717612]
Large language models (LLMs) have shown remarkable versatility in various generative tasks.
This study focuses on the topic of LLMs assist NLP Researchers.
To our knowledge, this is the first work to provide such a comprehensive analysis.
arXiv Detail & Related papers (2024-06-24T01:30:22Z) - AgentReview: Exploring Peer Review Dynamics with LLM Agents [13.826819101545926]
We introduce AgentReview, the first large language model (LLM) based peer review simulation framework.
Our study reveals significant insights, including a notable 37.1% variation in paper decisions due to reviewers' biases.
arXiv Detail & Related papers (2024-06-18T15:22:12Z) - RelevAI-Reviewer: A Benchmark on AI Reviewers for Survey Paper Relevance [0.8089605035945486]
We propose RelevAI-Reviewer, an automatic system that conceptualizes the task of survey paper review as a classification problem.
We introduce a novel dataset comprised of 25,164 instances. Each instance contains one prompt and four candidate papers, each varying in relevance to the prompt.
We develop a machine learning (ML) model capable of determining the relevance of each paper and identifying the most pertinent one.
arXiv Detail & Related papers (2024-06-13T06:42:32Z) - ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models [56.08917291606421]
ResearchAgent is an AI-based system for ideation and operationalization of novel work.
ResearchAgent automatically defines novel problems, proposes methods and designs experiments, while iteratively refining them.
We experimentally validate our ResearchAgent on scientific publications across multiple disciplines.
arXiv Detail & Related papers (2024-04-11T13:36:29Z) - Investigating Fairness Disparities in Peer Review: A Language Model
Enhanced Approach [77.61131357420201]
We conduct a thorough and rigorous study on fairness disparities in peer review with the help of large language models (LMs)
We collect, assemble, and maintain a comprehensive relational database for the International Conference on Learning Representations (ICLR) conference from 2017 to date.
We postulate and study fairness disparities on multiple protective attributes of interest, including author gender, geography, author, and institutional prestige.
arXiv Detail & Related papers (2022-11-07T16:19:42Z) - State-of-the-art generalisation research in NLP: A taxonomy and review [87.1541712509283]
We present a taxonomy for characterising and understanding generalisation research in NLP.
Our taxonomy is based on an extensive literature review of generalisation research.
We use our taxonomy to classify over 400 papers that test generalisation.
arXiv Detail & Related papers (2022-10-06T16:53:33Z) - A Systematic Literature Review of Empiricism and Norms of Reporting in
Computing Education Research Literature [4.339510167603376]
The goal of this study is to characterize the reporting of empiricism in Computing Education Research (CER) literature.
We conducted an SLR of 427 papers published during 2014 and 2015 in five CER venues.
Over 80% of papers had some form of empirical evaluation.
arXiv Detail & Related papers (2021-07-02T16:37:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.