Polariton-Based Room Temperature Quantum Phototransistors
- URL: http://arxiv.org/abs/2402.11234v1
- Date: Sat, 17 Feb 2024 09:48:26 GMT
- Title: Polariton-Based Room Temperature Quantum Phototransistors
- Authors: Jhuma Dutta (1), Pooja Bhatt (1), Kuljeet Kaur (1), Daniel E. G\'omez
(2) and Jino George (1) ((1) Indian Institute of Science Education and
Research (IISER) Mohali, (2) School of Science, RMIT University, Melbourne)
- Abstract summary: Strong light-matter coupling is a quantum process in which light and matter are coupled together, generating hybridized states.
We prepared quantum phototransistors using donor-acceptor combinations that can transfer energy via Rabi oscillations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Strong light-matter coupling is a quantum process in which light and matter
are coupled together, generating hybridized states. This is similar to the
notion of molecular hybridization, but one of the components is light. Here, we
utilized the idea and prepared quantum phototransistors using donor-acceptor
combinations that can transfer energy via Rabi oscillations. As a prototype
experiment, we used a cyanine J-aggregate (TDBC; donor) and MoS2 monolayer
(acceptor) in a field effect transistor cavity and studied the
photoresponsivity. The energy migrates through the newly formed polaritonic
ladder, and the relative efficiency of the device is nearly seven-fold at the
ON resonance. Further, the photon mixing fraction is calculated for each
independent device and correlated with energy transfer efficiency. In the
strongly coupled system, newly formed polaritonic states reshuffle the
probability function. A theoretical model based on the time dependent
Schr\"odinger equation is also used to interpret the results. Here, the
entangled light-matter states act as a strong channel for funnelling the energy
to the MoS2 monolayer, thereby boosting its ability to show the highest
photoresponsivity at ON-resonance. These experimental findings and the proposed
model suggest novel applications of strong light-matter coupling in quantum
materials.
Related papers
- Zeeman polaritons as a platform for probing Dicke physics in condensed matter [2.523996579776851]
We show that a spin--boson system is more compatible with the Dicke model and has advantages over boson--boson systems for pursuing experimental realizations of phenomena predicted for ultrastrongly coupled light--matter hybrids.
This finding demonstrates that a spin--boson system is more compatible with the Dicke model and has advantages over boson--boson systems for pursuing experimental realizations of phenomena predicted for ultrastrongly coupled light--matter hybrids.
arXiv Detail & Related papers (2024-09-25T20:28:01Z) - Hybrid boson sampling [0.0]
We propose boson sampling from a system of coupled photons and Bose-Einstein condensed atoms placed inside a multi-mode cavity.
We find a joint probability distribution of atom and photon numbers within a quasi-equilibrium model.
Merging cavity-QED and quantum-gas technologies into hybrid boson sampling setup has the potential to overcome limitations of separate, photon or atom, sampling schemes.
arXiv Detail & Related papers (2024-09-13T16:43:35Z) - Wavevector-resolved polarization entanglement from radiative cascades [27.84599956781646]
We show that there exists an interplay between photon polarization and emission wavevector, strongly affecting quantum correlations when emitters are embedded in micro-cavities.
Our results, backed by theoretical modelling, yield a brand-new understanding of cascaded emission for various quantum emitters.
arXiv Detail & Related papers (2024-09-12T09:32:29Z) - Entanglement of photonic modes from a continuously driven two-level system [34.50067763557076]
We experimentally generate entangled photonic modes by continuously exciting a quantum emitter, a superconducting qubit, with a coherent drive.
We show that entanglement is generated between modes extracted from the two sidebands of the resonance fluorescence spectrum.
Our approach can be utilized to distribute entanglement at a high rate in various physical platforms.
arXiv Detail & Related papers (2024-07-10T18:48:41Z) - Raman-phonon-polariton condensation in a transversely pumped cavity [44.99833362998488]
We suggest a new approach to realising phonon polaritons, by employing a transverse-pumping Raman scheme.
We show that such a system may realise a phonon-polariton condensate.
arXiv Detail & Related papers (2024-05-08T17:59:31Z) - Realisation of a Coherent and Efficient One-Dimensional Atom [0.15274583259797847]
A coherent and efficiently coupled one-dimensional atom provides a large nonlinearity, enabling photonic quantum gates.
Here, we use a semiconductor quantum dot in an open microcavity as an implementation of a one-dimensional atom.
Our results pave the way towards the creation of exotic photonic states and two-photon phase gates.
arXiv Detail & Related papers (2024-02-19T21:48:12Z) - Strong coupling between a single photon and a photon pair [43.14346227009377]
We report an experimental observation of the strong coupling between a single photon and a photon pair in an ultrastrongly-coupled circuit-QED system.
Results represent a key step towards a new regime of quantum nonlinear optics.
arXiv Detail & Related papers (2024-01-05T10:23:14Z) - Probing many-body correlations using quantum-cascade correlation
spectroscopy [0.0]
The radiative quantum cascade, i.e. the consecutive emission of photons from a ladder of energy levels, is of fundamental importance in quantum optics.
Here, we use exciton polaritons to explore the cascaded emission of photons in the regime where individual transitions of the ladder are not resolved.
Remarkably, the measured photon-photon correlations exhibit a strong dependence on the polariton energy, and therefore on the underlying polaritonic interaction strength.
arXiv Detail & Related papers (2022-12-18T09:51:12Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Investigating the coherent state detection probability of InGaAs/InP
SPAD-based single-photon detectors [55.41644538483948]
We investigate the probabilities of detecting single- and multi-photon coherent states on InGaAs/InP sine-gated and free-run avalanche diodes.
We conclude that multi-photon state detection cannot be regarded as independent events of absorption of individual single-photon states.
arXiv Detail & Related papers (2021-04-16T08:08:48Z) - A quantum optics approach to photoinduced electron transfer in cavities [0.0]
We study a simple model for photoinduced electron transfer reactions for the case of many donor-acceptor pairs.
We find that under proper resonance conditions, and in the presence of an incoherent drive, reaction rates can be enhanced by the cavity.
arXiv Detail & Related papers (2020-11-12T18:59:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.