論文の概要: SEE: Strategic Exploration and Exploitation for Cohesive In-Context Prompt Optimization
- arxiv url: http://arxiv.org/abs/2402.11347v2
- Date: Sat, 12 Jul 2025 20:31:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 18:48:20.954229
- Title: SEE: Strategic Exploration and Exploitation for Cohesive In-Context Prompt Optimization
- Title(参考訳): SEE:Cohesive In-Context Prompt Optimizationのための戦略的探索と爆発
- Authors: Wendi Cui, Zhuohang Li, Hao Sun, Damien Lopez, Kamalika Das, Bradley Malin, Sricharan Kumar, Jiaxin Zhang,
- Abstract要約: 大規模言語モデル(LLM)のための新しい結合型インコンテキストプロンプト最適化フレームワークを提案する。
SEEは、メタヒューリスティック最適化の原則を採用し、戦略的に探索と活用を行うスケーラブルで効率的なプロンプト最適化フレームワークである。
SEEは最先端のベースライン法を大幅に上回り、平均性能は13.94、計算コストは58.67である。
- 参考スコア(独自算出の注目度): 8.975505323004427
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Designing optimal prompts for Large Language Models (LLMs) is a complicated and resource-intensive task, often requiring substantial human expertise and effort. Existing approaches typically separate the optimization of prompt instructions and in-context learning examples, leading to incohesive prompts that are defined and represented by suboptimal task performance. To overcome these challenges, we propose a novel Cohesive In-Context Prompt Optimization framework that refines both prompt instructions and examples. However, formulating such an optimization in the discrete and high-dimensional space of natural language poses significant challenges in both convergence and computational efficiency. To address these issues, we introduce SEE, a scalable and efficient prompt optimization framework that adopts metaheuristic optimization principles and strategically balances exploration and exploitation to enhance optimization performance and achieve efficient convergence. SEE features a quad-phased design that alternates between global traversal (exploration) and local optimization (exploitation) and adaptively chooses LLM operators during the optimization process. We have conducted a comprehensive evaluation across 35 benchmark tasks, and SEE significantly outperforms state-of-the-art baseline methods by a large margin, achieving an average performance gain of 13.94 while reducing computational costs by 58.67.
- Abstract(参考訳): LLM(Large Language Models)の最適なプロンプトの設計は複雑でリソース集約的な作業であり、しばしば人間の専門知識と努力を必要とする。
既存のアプローチは、通常、プロンプト命令とインコンテキスト学習例の最適化を分離し、非結合的なプロンプトが定義され、サブ最適タスクのパフォーマンスによって表現される。
これらの課題を克服するために,我々は,素早い指示と実例の両方を洗練させる,新しい結合型In-Context Prompt Optimizationフレームワークを提案する。
しかし、自然言語の離散空間と高次元空間におけるそのような最適化の定式化は、収束と計算効率の両方において大きな課題をもたらす。
メタヒューリスティック最適化の原則を採用し,探索と利用の戦略的バランスを取り,最適化性能を高め,効率的な収束を実現するための,スケーラブルで効率的なプロンプト最適化フレームワークであるSEEを紹介する。
SEEは、グローバルトラバーサル(探索)と局所最適化(探索)を交互に行い、最適化プロセス中にLLM演算子を適応的に選択する四相設計を特徴としている。
我々は35のベンチマークタスクに対して総合的な評価を行い、SEEは最先端のベースライン手法を大きなマージンで大幅に上回り、平均性能は13.94で計算コストは58.67に削減した。
関連論文リスト
- ORPP: Self-Optimizing Role-playing Prompts to Enhance Language Model Capabilities [64.24517317344959]
複雑なタスクにおいて、大きな言語モデルから優れたパフォーマンスを引き出すためには、高品質なプロンプトが不可欠である。
本稿では,ロールプレイングプロンプトの最適化と生成によりモデル性能を向上させるフレームワークORPPを提案する。
ORPPは一致しただけでなく、ほとんどの場合、性能の点で既存の主流のプロンプト最適化手法を上回ります。
論文 参考訳(メタデータ) (2025-06-03T05:51:35Z) - A Survey on the Optimization of Large Language Model-based Agents [16.733092886211097]
大規模言語モデル(LLM)は様々な分野で広く採用されており、自律的な意思決定や対話的なタスクに欠かせないものとなっている。
しかしながら、現在の作業は通常、バニラLLMに適用された迅速な設計や微調整戦略に依存している。
LLMに基づくエージェント最適化手法の総合的なレビューを行い、パラメータ駆動型およびパラメータフリーな手法に分類する。
論文 参考訳(メタデータ) (2025-03-16T10:09:10Z) - Make Optimization Once and for All with Fine-grained Guidance [78.14885351827232]
Learning to Optimize (L2O)は、統合ニューラルネットワークによる最適化効率を向上させる。
L2Oパラダイムは、例えば、リフィット、目に見えない解決策を反復的または直接的に生成するなど、大きな成果を達成する。
そこで本研究では,Diff-L2Oと呼ばれる学習最適化のための一般的なフレームワークについて検討した。
論文 参考訳(メタデータ) (2025-03-14T14:48:12Z) - Towards more Contextual Agents: An extractor-Generator Optimization Framework [0.0]
LLM(Large Language Model)ベースのエージェントは、幅広い汎用アプリケーションにわたる複雑なタスクの解決に顕著な成功を収めている。
しかしながら、それらのパフォーマンスは、専門産業や研究領域のようなコンテキスト固有のシナリオで劣化することが多い。
この課題に対処するため,本研究では,LLMエージェントの文脈適応性を高めるための体系的アプローチを提案する。
論文 参考訳(メタデータ) (2025-02-18T15:07:06Z) - Deep Insights into Automated Optimization with Large Language Models and Evolutionary Algorithms [3.833708891059351]
大きな言語モデル(LLM)と進化的アルゴリズム(EA)は、制限を克服し、最適化をより自動化するための有望な新しいアプローチを提供する。
LLMは最適化戦略の生成、洗練、解釈が可能な動的エージェントとして機能する。
EAは進化作用素を通して、複雑な解空間を効率的に探索する。
論文 参考訳(メタデータ) (2024-10-28T09:04:49Z) - Optima: Optimizing Effectiveness and Efficiency for LLM-Based Multi-Agent System [75.25394449773052]
大規模言語モデル (LLM) に基づくマルチエージェントシステム (MAS) は協調的問題解決において顕著な可能性を示している。
通信効率の低下、スケーラビリティの低下、効果的なパラメータ更新方法の欠如などです。
本稿では,コミュニケーション効率とタスク効率を両立させ,これらの課題に対処する新しいフレームワークOptimaを提案する。
論文 参考訳(メタデータ) (2024-10-10T17:00:06Z) - In-context Demonstration Matters: On Prompt Optimization for Pseudo-Supervision Refinement [71.60563181678323]
大規模言語モデル(LLM)は様々なタスクで大きな成功を収めており、生成品質をさらに向上させるためには微調整が必要である場合もある。
これらの課題に対処する直接的な解決策は、教師なしの下流タスクから高信頼のデータを生成することである。
本稿では,プロンプトと全体的な擬似スーパービジョンを両立させる新しい手法,擬似教師付きデモアライメント・アライメント・アライメント・プロンプト・最適化(PAPO)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-04T03:39:28Z) - A Reinforcement Learning Environment for Automatic Code Optimization in the MLIR Compiler [0.10923877073891444]
本稿では,MLIRコンパイラ研究の促進を目的とした,MLIRコンパイラの最初のRL環境について紹介する。
また、より単純なアクション部分空間の積として作用空間の新たな定式化を提案し、より効率的かつ効率的な最適化を可能にした。
論文 参考訳(メタデータ) (2024-09-17T10:49:45Z) - QPO: Query-dependent Prompt Optimization via Multi-Loop Offline Reinforcement Learning [58.767866109043055]
クエリ依存型プロンプト最適化(QPO)を導入し、入力クエリに合わせて最適なプロンプトを生成するために、小さな事前訓練された言語モデルを反復的に微調整する。
我々は、オープンソースのタスクに様々なプロンプトをベンチマークする副産物として、すでに大量に存在するオフラインのプロンプトデータから洞察を得る。
様々なLLMスケールと多様なNLPおよび数学タスクの実験は、ゼロショットと少数ショットの両方のシナリオにおいて、我々の手法の有効性とコスト効率を実証している。
論文 参考訳(メタデータ) (2024-08-20T03:06:48Z) - Primitive Agentic First-Order Optimization [0.0]
本研究では,一階強化学習として,原始状態表現とエージェント環境相互作用を組み合わせた概念実証研究を提案する。
その結果,RLに基づく最適化では,基本的RL法と簡潔な部分的状態表現を組み合わせることで,複雑性の管理を最適化できることがわかった。
論文 参考訳(メタデータ) (2024-06-07T11:13:38Z) - Large Language Model-Aided Evolutionary Search for Constrained Multiobjective Optimization [15.476478159958416]
我々は,制約付き多目的最適化問題に対する進化探索を強化するために,大規模言語モデル(LLM)を用いる。
私たちの目標は、進化の集団の収束を早めることです。
論文 参考訳(メタデータ) (2024-05-09T13:44:04Z) - Localized Zeroth-Order Prompt Optimization [54.964765668688806]
そこで我々は,ZOPO(Localized zeroth-order prompt optimization)という新しいアルゴリズムを提案する。
ZOPOはニューラル・タンジェント・カーネルをベースとしたガウス法を標準ゼロ階次最適化に取り入れ、高速な局所最適探索を高速化する。
注目すべきは、ZOPOは最適化性能とクエリ効率の両方の観点から、既存のベースラインを上回っていることだ。
論文 参考訳(メタデータ) (2024-03-05T14:18:15Z) - How Multimodal Integration Boost the Performance of LLM for
Optimization: Case Study on Capacitated Vehicle Routing Problems [33.33996058215666]
大規模言語モデル(LLM)は、複雑な最適化課題に対処するための有能なツールとして自らを位置づけている。
テキストと視覚の両方のプロンプトを処理可能なマルチモーダルLLMを用いて最適化性能を向上させることを提案する。
論文 参考訳(メタデータ) (2024-03-04T06:24:21Z) - Connecting Large Language Models with Evolutionary Algorithms Yields
Powerful Prompt Optimizers [70.18534453485849]
EvoPromptは離散的なプロンプト最適化のためのフレームワークである。
進化的アルゴリズム(EA)の概念は、優れた性能と高速収束を示すものである。
人為的なプロンプトと既存の方法で自動プロンプト生成を著しく上回っている。
論文 参考訳(メタデータ) (2023-09-15T16:50:09Z) - Query-Dependent Prompt Evaluation and Optimization with Offline Inverse
RL [62.824464372594576]
ゼロショットプロンプト最適化により,Large Language Models (LLM) の算術的推論能力を向上させることを目的とする。
このような最適化では、以前見過ごされたクエリ依存の目的を特定します。
本稿では、オフライン逆強化学習を利用して、実演データから洞察を引き出すPrompt-OIRLを紹介する。
論文 参考訳(メタデータ) (2023-09-13T01:12:52Z) - Large Language Models as Optimizers [106.52386531624532]
本稿では,大規模言語モデル (LLM) をプロンプトとして活用するためのシンプルで効果的な手法である Prompting (OPRO) を提案する。
各最適化ステップにおいて、LLMは、前述した値を含むプロンプトから新しい解を生成する。
OPROにより最適化された最良のプロンプトは、GSM8Kで最大8%、Big-Bench Hardタスクで最大50%向上することを示した。
論文 参考訳(メタデータ) (2023-09-07T00:07:15Z) - Robust Prompt Optimization for Large Language Models Against
Distribution Shifts [80.6757997074956]
大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて重要な能力を示している。
本稿では,LLMの分散シフトに対するロバストな最適化法を提案する。
この問題は、ラベル付けされたソースグループに最適化されたプロンプトを同時にラベル付けされていないターゲットグループに一般化する必要がある。
論文 参考訳(メタデータ) (2023-05-23T11:30:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。