SEE: Strategic Exploration and Exploitation for Cohesive In-Context Prompt Optimization
- URL: http://arxiv.org/abs/2402.11347v2
- Date: Sat, 12 Jul 2025 20:31:55 GMT
- Title: SEE: Strategic Exploration and Exploitation for Cohesive In-Context Prompt Optimization
- Authors: Wendi Cui, Zhuohang Li, Hao Sun, Damien Lopez, Kamalika Das, Bradley Malin, Sricharan Kumar, Jiaxin Zhang,
- Abstract summary: We propose a novel Cohesive In-Context Prompt Optimization framework for Large Language Models (LLMs)<n>We introduce SEE, a scalable and efficient prompt optimization framework that adopts metaheuristic optimization principles and strategically exploration and exploitation.<n> SEE significantly outperforms state-of-the-art baseline methods by a large margin, achieving an average performance gain of 13.94 while reducing computational costs by 58.67.
- Score: 8.975505323004427
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Designing optimal prompts for Large Language Models (LLMs) is a complicated and resource-intensive task, often requiring substantial human expertise and effort. Existing approaches typically separate the optimization of prompt instructions and in-context learning examples, leading to incohesive prompts that are defined and represented by suboptimal task performance. To overcome these challenges, we propose a novel Cohesive In-Context Prompt Optimization framework that refines both prompt instructions and examples. However, formulating such an optimization in the discrete and high-dimensional space of natural language poses significant challenges in both convergence and computational efficiency. To address these issues, we introduce SEE, a scalable and efficient prompt optimization framework that adopts metaheuristic optimization principles and strategically balances exploration and exploitation to enhance optimization performance and achieve efficient convergence. SEE features a quad-phased design that alternates between global traversal (exploration) and local optimization (exploitation) and adaptively chooses LLM operators during the optimization process. We have conducted a comprehensive evaluation across 35 benchmark tasks, and SEE significantly outperforms state-of-the-art baseline methods by a large margin, achieving an average performance gain of 13.94 while reducing computational costs by 58.67.
Related papers
- ORPP: Self-Optimizing Role-playing Prompts to Enhance Language Model Capabilities [64.24517317344959]
High-quality prompts are crucial for eliciting outstanding performance from large language models on complex tasks.<n>We propose ORPP, a framework that enhances model performance by optimizing and generating role-playing prompts.<n>We show that ORPP not only matches but in most cases surpasses existing mainstream prompt optimization methods in terms of performance.
arXiv Detail & Related papers (2025-06-03T05:51:35Z) - A Survey on the Optimization of Large Language Model-based Agents [16.733092886211097]
Large Language Models (LLMs) have been widely adopted in various fields, becoming essential for autonomous decision-making and interactive tasks.<n>However, current work typically relies on prompt design or fine-tuning strategies applied to vanilla LLMs.<n>We provide a comprehensive review of LLM-based agent optimization approaches, categorizing them into parameter-driven and parameter-free methods.
arXiv Detail & Related papers (2025-03-16T10:09:10Z) - Make Optimization Once and for All with Fine-grained Guidance [78.14885351827232]
Learning to Optimize (L2O) enhances optimization efficiency with integrated neural networks.<n>L2O paradigms achieve great outcomes, e.g., refitting, generating unseen solutions iteratively or directly.<n>Our analyses explore general framework for learning optimization, called Diff-L2O, focusing on augmenting solutions from a wider view.
arXiv Detail & Related papers (2025-03-14T14:48:12Z) - Towards more Contextual Agents: An extractor-Generator Optimization Framework [0.0]
Large Language Model (LLM)-based agents have demonstrated remarkable success in solving complex tasks across a wide range of general-purpose applications.
However, their performance often degrades in context-specific scenarios, such as specialized industries or research domains.
To address this challenge, our work introduces a systematic approach to enhance the contextual adaptability of LLM-based agents.
arXiv Detail & Related papers (2025-02-18T15:07:06Z) - Deep Insights into Automated Optimization with Large Language Models and Evolutionary Algorithms [3.833708891059351]
Large Language Models (LLMs) and Evolutionary Algorithms (EAs) offer promising new approach to overcome limitations and make optimization more automated.
LLMs act as dynamic agents that can generate, refine, and interpret optimization strategies.
EAs efficiently explore complex solution spaces through evolutionary operators.
arXiv Detail & Related papers (2024-10-28T09:04:49Z) - Optima: Optimizing Effectiveness and Efficiency for LLM-Based Multi-Agent System [75.25394449773052]
Large Language Model (LLM) based multi-agent systems (MAS) show remarkable potential in collaborative problem-solving.
Yet they still face critical challenges: low communication efficiency, poor scalability, and a lack of effective parameter-updating optimization methods.
We present Optima, a novel framework that addresses these issues by significantly enhancing both communication efficiency and task effectiveness.
arXiv Detail & Related papers (2024-10-10T17:00:06Z) - In-context Demonstration Matters: On Prompt Optimization for Pseudo-Supervision Refinement [71.60563181678323]
Large language models (LLMs) have achieved great success across diverse tasks, and fine-tuning is sometimes needed to further enhance generation quality.<n>To handle these challenges, a direct solution is to generate high-confidence'' data from unsupervised downstream tasks.<n>We propose a novel approach, pseudo-supervised demonstrations aligned prompt optimization (PAPO) algorithm, which jointly refines both the prompt and the overall pseudo-supervision.
arXiv Detail & Related papers (2024-10-04T03:39:28Z) - A Reinforcement Learning Environment for Automatic Code Optimization in the MLIR Compiler [0.10923877073891444]
We introduce the first RL environment for the MLIR compiler, dedicated to facilitating MLIR compiler research.
We also propose a novel formulation of the action space as a product of simpler action subspaces, enabling more efficient and effective optimizations.
arXiv Detail & Related papers (2024-09-17T10:49:45Z) - QPO: Query-dependent Prompt Optimization via Multi-Loop Offline Reinforcement Learning [58.767866109043055]
We introduce Query-dependent Prompt Optimization (QPO), which iteratively fine-tune a small pretrained language model to generate optimal prompts tailored to the input queries.
We derive insights from offline prompting demonstration data, which already exists in large quantities as a by-product of benchmarking diverse prompts on open-sourced tasks.
Experiments on various LLM scales and diverse NLP and math tasks demonstrate the efficacy and cost-efficiency of our method in both zero-shot and few-shot scenarios.
arXiv Detail & Related papers (2024-08-20T03:06:48Z) - Primitive Agentic First-Order Optimization [0.0]
This work presents a proof-of-concept study combining primitive state representations and agent-environment interactions as first-order reinforcement learning.
The results show that elementary RL methods combined with succinct partial state representations can be used as optimizeds manage complexity in RL-based optimization.
arXiv Detail & Related papers (2024-06-07T11:13:38Z) - Large Language Model-Aided Evolutionary Search for Constrained Multiobjective Optimization [15.476478159958416]
We employ a large language model (LLM) to enhance evolutionary search for solving constrained multi-objective optimization problems.
Our aim is to speed up the convergence of the evolutionary population.
arXiv Detail & Related papers (2024-05-09T13:44:04Z) - Localized Zeroth-Order Prompt Optimization [54.964765668688806]
We propose a novel algorithm, namely localized zeroth-order prompt optimization (ZOPO)
ZOPO incorporates a Neural Tangent Kernel-based derived Gaussian process into standard zeroth-order optimization for an efficient search of well-performing local optima in prompt optimization.
Remarkably, ZOPO outperforms existing baselines in terms of both the optimization performance and the query efficiency.
arXiv Detail & Related papers (2024-03-05T14:18:15Z) - How Multimodal Integration Boost the Performance of LLM for
Optimization: Case Study on Capacitated Vehicle Routing Problems [33.33996058215666]
Large language models (LLMs) have positioned themselves as capable tools for addressing complex optimization challenges.
We propose to enhance the optimization performance using multimodal LLM capable of processing both textual and visual prompts.
arXiv Detail & Related papers (2024-03-04T06:24:21Z) - Connecting Large Language Models with Evolutionary Algorithms Yields
Powerful Prompt Optimizers [70.18534453485849]
EvoPrompt is a framework for discrete prompt optimization.
It borrows the idea of evolutionary algorithms (EAs) as they exhibit good performance and fast convergence.
It significantly outperforms human-engineered prompts and existing methods for automatic prompt generation.
arXiv Detail & Related papers (2023-09-15T16:50:09Z) - Query-Dependent Prompt Evaluation and Optimization with Offline Inverse
RL [62.824464372594576]
We aim to enhance arithmetic reasoning ability of Large Language Models (LLMs) through zero-shot prompt optimization.
We identify a previously overlooked objective of query dependency in such optimization.
We introduce Prompt-OIRL, which harnesses offline inverse reinforcement learning to draw insights from offline prompting demonstration data.
arXiv Detail & Related papers (2023-09-13T01:12:52Z) - Large Language Models as Optimizers [106.52386531624532]
We propose Optimization by PROmpting (OPRO), a simple and effective approach to leverage large language models (LLMs) as prompts.
In each optimization step, the LLM generates new solutions from the prompt that contains previously generated solutions with their values.
We demonstrate that the best prompts optimized by OPRO outperform human-designed prompts by up to 8% on GSM8K, and by up to 50% on Big-Bench Hard tasks.
arXiv Detail & Related papers (2023-09-07T00:07:15Z) - Robust Prompt Optimization for Large Language Models Against
Distribution Shifts [80.6757997074956]
Large Language Model (LLM) has demonstrated significant ability in various Natural Language Processing tasks.
We propose a new problem of robust prompt optimization for LLMs against distribution shifts.
This problem requires the prompt optimized over the labeled source group can simultaneously generalize to an unlabeled target group.
arXiv Detail & Related papers (2023-05-23T11:30:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.