Non-Heisenbergian quantum mechanics
- URL: http://arxiv.org/abs/2402.11350v2
- Date: Mon, 14 Oct 2024 17:27:17 GMT
- Title: Non-Heisenbergian quantum mechanics
- Authors: MohammadJavad Kazemi, Ghadir Jafari,
- Abstract summary: Relaxing the postulates of an axiomatic theory is a natural way to find more general theories.
Here, we use this way to extend quantum mechanics by ignoring the heart of Heisenberg's quantum mechanics.
Perhaps surprisingly, this non-Heisenberg quantum theory, without a priori assumption of the non-commutation relation, leads to a modified Heisenberg uncertainty relation.
- Score: 0.0
- License:
- Abstract: Relaxing the postulates of an axiomatic theory is a natural way to find more general theories, and historically, the discovery of non-Euclidean geometry is a famous example of this procedure. Here, we use this way to extend quantum mechanics by ignoring the heart of Heisenberg's quantum mechanics -- We do not assume the existence of a position operator that satisfies the Heisenberg commutation relation, $[\hat x,\hat p]=i\hbar$. The remaining axioms of quantum theory, besides Galilean symmetry, lead to a more general quantum theory with a free parameter $l_0$ of length dimension, such that as $l_0 \to 0$ the theory reduces to standard quantum theory. Perhaps surprisingly, this non-Heisenberg quantum theory, without a priori assumption of the non-commutation relation, leads to a modified Heisenberg uncertainty relation, $\Delta x \Delta p\geq \sqrt{\hbar^2/4+l_0^2(\Delta p)^2}$, which ensures the existence of a minimal position uncertainty, $l_0$, as expected from various quantum gravity studies. By comparing the results of this framework with some observed data, which includes the first longitudinal normal modes of the bar gravitational wave detector AURIGA and the $1S-2S$ transition in the hydrogen atom, we obtain upper bounds on the $l_0$.
Related papers
- Nature cannot be described by any causal theory with a finite number of measurements [0.0]
We show that there exists quantum correlations obtained from performing $n$ dichotomic quantum measurements in a bipartite Bell scenario.
That is, it requires any no-signaling theory an unbounded number of measurements to reproduce the predictions of quantum theory.
arXiv Detail & Related papers (2024-08-15T18:00:00Z) - Generalized Einstein-Podolsky-Rosen Steering Paradox [18.5699135339787]
We present a generalized EPR steering paradox, which predicts a contradictory equality $2_Q=left( 1+deltaright)_C$.
We test the paradox through a two-setting steering protocol, and find that the state is steerable if some specific measurement requirements are satisfied.
Our construction also enlightens the building of EPR steering inequality, which may contribute to some schemes for typical quantum teleportation and quantum key distributions.
arXiv Detail & Related papers (2024-05-06T01:25:11Z) - Continuum limit of the Green function in scaled affine $\varphi^4_4$ quantum Euclidean covariant relativistic field theory [0.0]
We prove through path integral Monte Carlo computer experiments that the affine quantization of the $varphi_44$ scaled Euclidean covariant relativistic scalar field theory is a valid quantum field theory.
arXiv Detail & Related papers (2023-12-29T11:30:56Z) - An Updated Quantum Complementarity Principle [0.0]
Bohr's complementarity principle has long been a fundamental concept in quantum mechanics.
Recent advancements demonstrate that quantum complementarity relations can be rigorously derived from the axioms of quantum mechanics.
arXiv Detail & Related papers (2023-12-05T13:10:10Z) - Relative Facts of Relational Quantum Mechanics are Incompatible with
Quantum Mechanics [0.0]
RQM measurement arise from interactions which entangle a system $$S and an observer $A$ without decoherence.
The criterion states that whenever an interpretation introduces a notion of outcomes, these outcomes must follow the probability distribution specified by the Born rule.
arXiv Detail & Related papers (2022-08-24T23:15:00Z) - Geometric relative entropies and barycentric Rényi divergences [16.385815610837167]
monotone quantum relative entropies define monotone R'enyi quantities whenever $P$ is a probability measure.
We show that monotone quantum relative entropies define monotone R'enyi quantities whenever $P$ is a probability measure.
arXiv Detail & Related papers (2022-07-28T17:58:59Z) - Heisenberg-Limited Waveform Estimation with Solid-State Spins in Diamond [15.419555338671772]
Heisenberg limit in arbitrary waveform estimation is quite different with parameter estimation.
It is still a non-trivial challenge to generate a large number of exotic quantum entangled states to achieve this quantum limit.
This work provides an essential step towards realizing quantum-enhanced structure recognition in a continuous space and time.
arXiv Detail & Related papers (2021-05-13T01:52:18Z) - Gentle Measurement as a Principle of Quantum Theory [9.137554315375919]
We propose the gentle measurement principle (GMP) as one of the principles at the foundation of quantum mechanics.
We show, within the framework of general probabilistic theories, that GMP imposes strong restrictions on the law of physics.
arXiv Detail & Related papers (2021-03-28T11:59:49Z) - $\PT$ Symmetry and Renormalisation in Quantum Field Theory [62.997667081978825]
Quantum systems governed by non-Hermitian Hamiltonians with $PT$ symmetry are special in having real energy eigenvalues bounded below and unitary time evolution.
We show how $PT$ symmetry may allow interpretations that evade ghosts and instabilities present in an interpretation of the theory within a Hermitian framework.
arXiv Detail & Related papers (2021-03-27T09:46:36Z) - Ruling out real-valued standard formalism of quantum theory [19.015836913247288]
A quantum game has been developed to distinguish standard quantum theory from its real-number analog.
We experimentally implement the quantum game based on entanglement swapping with a state-of-the-art fidelity of 0.952(1).
Our results disprove the real-number formulation and establish the indispensable role of complex numbers in the standard quantum theory.
arXiv Detail & Related papers (2021-03-15T03:56:13Z) - The Quantum Wasserstein Distance of Order 1 [16.029406401970167]
We propose a generalization of the Wasserstein distance of order 1 to the quantum states of $n$ qudits.
The proposed distance is invariant with respect to permutations of the qudits and unitary operations acting on one qudit.
We also propose a generalization of the Lipschitz constant to quantum observables.
arXiv Detail & Related papers (2020-09-09T18:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.