Generalized Einstein-Podolsky-Rosen Steering Paradox
- URL: http://arxiv.org/abs/2405.03100v2
- Date: Wed, 5 Jun 2024 12:57:36 GMT
- Title: Generalized Einstein-Podolsky-Rosen Steering Paradox
- Authors: Zhi-Jie Liu, Xing-Yan Fan, Jie Zhou, Mi Xie, Jing-Ling Chen,
- Abstract summary: We present a generalized EPR steering paradox, which predicts a contradictory equality $2_Q=left( 1+deltaright)_C$.
We test the paradox through a two-setting steering protocol, and find that the state is steerable if some specific measurement requirements are satisfied.
Our construction also enlightens the building of EPR steering inequality, which may contribute to some schemes for typical quantum teleportation and quantum key distributions.
- Score: 18.5699135339787
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum paradoxes are essential means to reveal the incompatibility between quantum and classical theories, among which the Einstein-Podolsky-Rosen (EPR) steering paradox offers a sharper criterion for the contradiction between local-hidden-state model and quantum mechanics than the usual inequality-based method. In this work, we present a generalized EPR steering paradox, which predicts a contradictory equality $2_{Q}=\left( 1+\delta\right)_{C}$ ($0\leq\delta<1$) given by the quantum ($Q$) and classical ($C$) theories. For any $N$-qubit state in which the conditional state of the steered party is pure, we test the paradox through a two-setting steering protocol, and find that the state is steerable if some specific measurement requirements are satisfied. Moreover, our construction also enlightens the building of EPR steering inequality, which may contribute to some schemes for typical quantum teleportation and quantum key distributions.
Related papers
- Einstein-Podolsky-Rosen steering paradox "2=1'' for $N$ qubits [16.688291626259435]
EPR paradox highlights the absence of a local realistic explanation for quantum mechanics.
We show that the contradiction holds for any $N$-qubit state as long as both the pure state requirement and the measurement requirement are satisfied.
arXiv Detail & Related papers (2024-06-25T03:28:26Z) - Bertlmann's socks from a Viennese perspective [0.0]
A century after its inception, we are presented with a promising interpretive key, intimated by Wheeler as early as 1974.
The interpretative paradoxes of this theory might be resolved if we discern the relationship between logical undecidability and quantum undecidability.
It will be demonstrated how both are intricately linked to an observer/observed relational issue, and how the idiosyncratic behaviours of quantum physics can be reconciled with the normative.
arXiv Detail & Related papers (2023-08-07T06:49:19Z) - Logic meets Wigner's Friend (and their Friends) [49.1574468325115]
We take a fresh look at Wigner's Friend thought-experiment and some of its more recent variants and extensions.
We discuss various solutions proposed in the literature, focusing on a few questions.
arXiv Detail & Related papers (2023-07-04T13:31:56Z) - Relative Facts of Relational Quantum Mechanics are Incompatible with
Quantum Mechanics [0.0]
RQM measurement arise from interactions which entangle a system $$S and an observer $A$ without decoherence.
The criterion states that whenever an interpretation introduces a notion of outcomes, these outcomes must follow the probability distribution specified by the Born rule.
arXiv Detail & Related papers (2022-08-24T23:15:00Z) - Experimental demonstration of optimal unambiguous two-out-of-four
quantum state elimination [52.77024349608834]
A core principle of quantum theory is that non-orthogonal quantum states cannot be perfectly distinguished with single-shot measurements.
Here we implement a quantum state elimination measurement which unambiguously rules out two of four pure, non-orthogonal quantum states.
arXiv Detail & Related papers (2022-06-30T18:00:01Z) - Incompatibility of observables, channels and instruments in information
theories [68.8204255655161]
We study the notion of compatibility for tests of an operational probabilistic theory.
We show that a theory admits of incompatible tests if and only if some information cannot be extracted without disturbance.
arXiv Detail & Related papers (2022-04-17T08:44:29Z) - Stochastic approximate state conversion for entanglement and general quantum resource theories [41.94295877935867]
An important problem in any quantum resource theory is to determine how quantum states can be converted into each other.
Very few results have been presented on the intermediate regime between probabilistic and approximate transformations.
We show that these bounds imply an upper bound on the rates for various classes of states under probabilistic transformations.
We also show that the deterministic version of the single copy bounds can be applied for drawing limitations on the manipulation of quantum channels.
arXiv Detail & Related papers (2021-11-24T17:29:43Z) - Einstein-Podolsky-Rosen uncertainty limits for bipartite multimode
states [0.0]
Correlations of two-party $(N, textvs,1)$-mode states are examined by using the variances of a pair of suitable EPR-like observables.
The analysis of the minimal properly normalized sums of these variances yields necessary conditions of separability and EPR unsteerability.
arXiv Detail & Related papers (2021-07-02T13:11:00Z) - Observers of quantum systems cannot agree to disagree [55.41644538483948]
We ask whether agreement between observers can serve as a physical principle that must hold for any theory of the world.
We construct examples of (postquantum) no-signaling boxes where observers can agree to disagree.
arXiv Detail & Related papers (2021-02-17T19:00:04Z) - A Steering Paradox for Einstein-Podolsky-Rosen Argument and its Extended
Inequality [0.0]
We formulate the original EPR steering paradox into a contradiction equality.
We perform an experimental test of the steering paradox in a two-qubit scenario.
Our results deepen the understanding of quantum foundations and provide an efficient way to detect the steerability of quantum states.
arXiv Detail & Related papers (2020-04-09T03:42:44Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.