論文の概要: An Elementary Predictor Obtaining $2\sqrt{T}+1$ Distance to Calibration
- arxiv url: http://arxiv.org/abs/2402.11410v2
- Date: Mon, 07 Oct 2024 14:26:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-08 13:41:12.698535
- Title: An Elementary Predictor Obtaining $2\sqrt{T}+1$ Distance to Calibration
- Title(参考訳): 2\sqrt{T}+1$の校正距離を有する初等予測器
- Authors: Eshwar Ram Arunachaleswaran, Natalie Collina, Aaron Roth, Mirah Shi,
- Abstract要約: オンライン予測器は, 対向的な設定でキャリブレーションまでの距離が$O(sqrtT)$であることを示す。
キャリブレーション誤差を最大2sqrtT+1$で求める,極めて単純,効率的,決定論的アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 4.628072661683411
- License:
- Abstract: Blasiok et al. [2023] proposed distance to calibration as a natural measure of calibration error that unlike expected calibration error (ECE) is continuous. Recently, Qiao and Zheng [2024] gave a non-constructive argument establishing the existence of an online predictor that can obtain $O(\sqrt{T})$ distance to calibration in the adversarial setting, which is known to be impossible for ECE. They leave as an open problem finding an explicit, efficient algorithm. We resolve this problem and give an extremely simple, efficient, deterministic algorithm that obtains distance to calibration error at most $2\sqrt{T}+1$.
- Abstract(参考訳): Blasiok et al [2023] はキャリブレーション誤差の自然な尺度としてキャリブレーションの距離を提案した。
最近、Qiao と Zheng [2024] は、ECE では不可能であることが知られている対角線の校正までの距離を$O(\sqrt{T})$で得るオンライン予測器の存在を確立する非構成的議論を行った。
それらは、明示的で効率的なアルゴリズムを見つけるためのオープンな問題として残されている。
この問題を解き、極端に単純で効率的で決定論的なアルゴリズムを与え、最大2$\sqrt{T}+1$で校正誤差までの距離を求める。
関連論文リスト
- Breaking the $T^{2/3}$ Barrier for Sequential Calibration [26.563792462828726]
バイナリシーケンスのオンライン校正予測の問題について検討する。
Foster & Vohra (1998) は、$O(T2/3)$キャリブレーション誤差を$T$タイムステップ後に引き起こし、$Omega(T1/2)$の低い境界を示した。
Qiao & Valiant (2021) は、符号保存と呼ばれるゲームを導入して下限を$Omega(T0.528)$に改善した。
論文 参考訳(メタデータ) (2024-06-19T16:19:39Z) - Orthogonal Causal Calibration [55.28164682911196]
我々は、任意の損失$ell$に対して、任意の因果パラメータのキャリブレーション誤差$theta$の一般的な上限を証明した。
我々は、因果校正のための2つのサンプル分割アルゴリズムの収束解析に境界を用いる。
論文 参考訳(メタデータ) (2024-06-04T03:35:25Z) - Testing Calibration in Nearly-Linear Time [14.099477870728595]
プロパティテストのレンズによるキャリブレーションのアルゴリズム的な研究に焦点をあてる。
実験的なスムーズなキャリブレーション線形プログラムは,高構造グラフ上の最小コストフローの例として再計算できる,という簡単な観察を行う。
我々は,キャリブレーションの標準概念を忠実に捉え,我々のアルゴリズムが大規模なサンプルサイズに対応するために効率的にスケールできることを実証する実験を行った。
論文 参考訳(メタデータ) (2024-02-20T17:53:24Z) - On the Distance from Calibration in Sequential Prediction [4.14360329494344]
キャリブレーション距離から予測器を評価可能な逐次二分予測条件について検討する。
キャリブレーション距離は、完全キャリブレーションから逸脱する自然で直感的な尺度である。
我々は,逆選択された$T$バイナリ結果の列に対して,予測において$O(sqrtT)$キャリブレーション距離を達成できる予測アルゴリズムが存在することを証明した。
論文 参考訳(メタデータ) (2024-02-12T07:37:19Z) - A Unifying Theory of Distance from Calibration [9.959025631339982]
完璧なキャリブレーションからの距離を定量化する方法については合意がない。
本研究では, キャリブレーションからの距離に関する基礎的な概念を提案する。
フレームワークの適用により、一貫性があり、効率的に推定できる3つのキャリブレーションを識別する。
論文 参考訳(メタデータ) (2022-11-30T10:38:24Z) - A Consistent and Differentiable Lp Canonical Calibration Error Estimator [21.67616079217758]
ディープニューラルネットワークは校正が不十分で、自信過剰な予測を出力する傾向がある。
ディリクレ核密度推定に基づく低バイアス・トレーニング可能な校正誤差推定器を提案する。
提案手法はカーネルの自然な選択であり,他の量の一貫した推定値を生成するのに利用できる。
論文 参考訳(メタデータ) (2022-10-13T15:11:11Z) - T-Cal: An optimal test for the calibration of predictive models [49.11538724574202]
有限検証データセットを用いた予測モデルの誤校正を仮説検証問題として検討する。
誤校正の検出は、クラスの条件付き確率が予測の十分滑らかな関数である場合にのみ可能である。
我々は、$ell$-Expected Error(ECE)のデバイアスドプラグイン推定器に基づくキャリブレーションのためのミニマックステストであるT-Calを提案する。
論文 参考訳(メタデータ) (2022-03-03T16:58:54Z) - Localized Calibration: Metrics and Recalibration [133.07044916594361]
完全大域キャリブレーションと完全個別化キャリブレーションのギャップにまたがる細粒度キャリブレーション指標を提案する。
次に,局所再校正法であるLoReを導入し,既存の校正法よりもLCEを改善する。
論文 参考訳(メタデータ) (2021-02-22T07:22:12Z) - Optimal network online change point localisation [73.93301212629231]
オンラインネットワーク変化点検出の問題点について検討する。
この設定では、独立したベルヌーイネットワークの集合が順次収集され、基礎となる変化点が生じる。
目的は、虚偽のアラームの数または確率の制約に応じて、それが存在する場合、変更点をできるだけ早く検出することです。
論文 参考訳(メタデータ) (2021-01-14T07:24:39Z) - Uncertainty Quantification and Deep Ensembles [79.4957965474334]
ディープアンサンブルが必ずしもキャリブレーション特性の改善につながるとは限らないことを示す。
そこで本研究では,混成正規化などの現代的な手法と併用して標準アンサンブル法を用いることで,キャリブレーションの少ないモデルが得られることを示す。
このテキストは、データが不足しているときにディープラーニングを活用するために、最も単純で一般的な3つのアプローチの相互作用を調べる。
論文 参考訳(メタデータ) (2020-07-17T07:32:24Z) - Transferable Calibration with Lower Bias and Variance in Domain
Adaptation [139.4332115349543]
ドメイン適応(DA)は、ラベル付きソースドメインからラベル付きターゲットドメインへの学習マシンの転送を可能にする。
DAモデルの予測的不確実性を推定する方法は、安全クリティカルなシナリオにおける意思決定に不可欠である。
TransCalは既存のDAメソッドの校正に簡単に適用できる。
論文 参考訳(メタデータ) (2020-07-16T11:09:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。