VoltSchemer: Use Voltage Noise to Manipulate Your Wireless Charger
- URL: http://arxiv.org/abs/2402.11423v1
- Date: Sun, 18 Feb 2024 01:50:27 GMT
- Title: VoltSchemer: Use Voltage Noise to Manipulate Your Wireless Charger
- Authors: Zihao Zhan, Yirui Yang, Haoqi Shan, Hanqiu Wang, Yier Jin, Shuo Wang,
- Abstract summary: VoltSchemer is a set of innovative attacks that grant attackers control over commercial-off-the-shelf wireless chargers.
We demonstrate the effectiveness and practicality of the VoltSchemer attacks with successful attacks on 9 top-selling COTS wireless chargers.
- Score: 15.18760817873496
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Wireless charging is becoming an increasingly popular charging solution in portable electronic products for a more convenient and safer charging experience than conventional wired charging. However, our research identified new vulnerabilities in wireless charging systems, making them susceptible to intentional electromagnetic interference. These vulnerabilities facilitate a set of novel attack vectors, enabling adversaries to manipulate the charger and perform a series of attacks. In this paper, we propose VoltSchemer, a set of innovative attacks that grant attackers control over commercial-off-the-shelf wireless chargers merely by modulating the voltage from the power supply. These attacks represent the first of its kind, exploiting voltage noises from the power supply to manipulate wireless chargers without necessitating any malicious modifications to the chargers themselves. The significant threats imposed by VoltSchemer are substantiated by three practical attacks, where a charger can be manipulated to: control voice assistants via inaudible voice commands, damage devices being charged through overcharging or overheating, and bypass Qi-standard specified foreign-object-detection mechanism to damage valuable items exposed to intense magnetic fields. We demonstrate the effectiveness and practicality of the VoltSchemer attacks with successful attacks on 9 top-selling COTS wireless chargers. Furthermore, we discuss the security implications of our findings and suggest possible countermeasures to mitigate potential threats.
Related papers
- Charging Ahead: A Hierarchical Adversarial Framework for Counteracting Advanced Cyber Threats in EV Charging Stations [1.873794246359724]
Electric vehicles (EVs) provide false information to gain higher charging priority, potentially causing grid instability.
This paper introduces a hierarchical adversarial framework using DRL (HADRL), which effectively detects stealthy cyberattacks on EV charging stations.
arXiv Detail & Related papers (2024-07-04T08:23:03Z) - Physical Backdoor Attack can Jeopardize Driving with Vision-Large-Language Models [53.701148276912406]
Vision-Large-Language-models (VLMs) have great application prospects in autonomous driving.
BadVLMDriver is the first backdoor attack against VLMs for autonomous driving that can be launched in practice using physical objects.
BadVLMDriver achieves a 92% attack success rate in inducing a sudden acceleration when coming across a pedestrian holding a red balloon.
arXiv Detail & Related papers (2024-04-19T14:40:38Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuard is the first framework for fault type and zone classification resilient to adversarial attacks.
We propose a low-complexity fault prediction model and an online adversarial training technique to enhance robustness.
Our model outclasses the state-of-the-art for resilient fault prediction benchmarking, with an accuracy of up to 0.958.
arXiv Detail & Related papers (2024-03-26T08:51:23Z) - Information Leakage through Physical Layer Supply Voltage Coupling Vulnerability [2.6490401904186758]
We introduce a novel side-channel vulnerability that leaks data-dependent power variations through physical layer supply voltage coupling (PSVC)
Unlike traditional power side-channel attacks, the proposed vulnerability allows an adversary to mount an attack and extract information without modifying the device.
arXiv Detail & Related papers (2024-03-12T23:39:54Z) - DynamiQS: Quantum Secure Authentication for Dynamic Charging of Electric Vehicles [61.394095512765304]
Dynamic Wireless Power Transfer (DWPT) is a novel technology that allows charging an electric vehicle while driving.
Recent advancements in quantum computing jeopardize classical public key cryptography.
We propose DynamiQS, the first post-quantum secure authentication protocol for dynamic wireless charging.
arXiv Detail & Related papers (2023-12-20T09:40:45Z) - Charge Manipulation Attacks Against Smart Electric Vehicle Charging Stations and Deep Learning-based Detection Mechanisms [49.37592437398933]
"Smart" electric vehicle charging stations (EVCSs) will be a key step toward achieving green transportation.
We investigate charge manipulation attacks (CMAs) against EV charging, in which an attacker manipulates the information exchanged during smart charging operations.
We propose an unsupervised deep learning-based mechanism to detect CMAs by monitoring the parameters involved in EV charging.
arXiv Detail & Related papers (2023-10-18T18:38:59Z) - Downlink Power Allocation in Massive MIMO via Deep Learning: Adversarial
Attacks and Training [62.77129284830945]
This paper considers a regression problem in a wireless setting and shows that adversarial attacks can break the DL-based approach.
We also analyze the effectiveness of adversarial training as a defensive technique in adversarial settings and show that the robustness of DL-based wireless system against attacks improves significantly.
arXiv Detail & Related papers (2022-06-14T04:55:11Z) - Brokenwire : Wireless Disruption of CCS Electric Vehicle Charging [16.527929607417178]
We present a novel attack against the Combined Charging System, one of the most widely used DC rapid charging technologies for electric vehicles (EVs)
Our attack, Brokenwire, interrupts necessary control communication between the vehicle and charger, causing charging sessions to abort.
We find the attack to be successful in the real world, at ranges up to 47 m, for a power budget of less than 1 W.
arXiv Detail & Related papers (2022-02-04T12:38:35Z) - Online Alternate Generator against Adversarial Attacks [144.45529828523408]
Deep learning models are notoriously sensitive to adversarial examples which are synthesized by adding quasi-perceptible noises on real images.
We propose a portable defense method, online alternate generator, which does not need to access or modify the parameters of the target networks.
The proposed method works by online synthesizing another image from scratch for an input image, instead of removing or destroying adversarial noises.
arXiv Detail & Related papers (2020-09-17T07:11:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.