論文の概要: OptEx: Expediting First-Order Optimization with Approximately Parallelized Iterations
- arxiv url: http://arxiv.org/abs/2402.11427v2
- Date: Tue, 29 Oct 2024 04:20:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-30 13:38:26.606861
- Title: OptEx: Expediting First-Order Optimization with Approximately Parallelized Iterations
- Title(参考訳): OptEx: ほぼ並列化されたイテレーションによる一階最適化の高速化
- Authors: Yao Shu, Jiongfeng Fang, Ying Tiffany He, Fei Richard Yu,
- Abstract要約: ほぼ並列化されたイテレーション (OptEx) で高速化された一階最適化を導入する。
OptExは、並列コンピューティングを活用して、その反復的ボトルネックを軽減することで、FOOの効率を高める最初のフレームワークである。
我々は、カーネル化された勾配推定の信頼性とSGDベースのOpsExの複雑さを理論的に保証する。
- 参考スコア(独自算出の注目度): 12.696136981847438
- License:
- Abstract: First-order optimization (FOO) algorithms are pivotal in numerous computational domains such as machine learning and signal denoising. However, their application to complex tasks like neural network training often entails significant inefficiencies due to the need for many sequential iterations for convergence. In response, we introduce first-order optimization expedited with approximately parallelized iterations (OptEx), the first framework that enhances the efficiency of FOO by leveraging parallel computing to mitigate its iterative bottleneck. OptEx employs kernelized gradient estimation to make use of gradient history for future gradient prediction, enabling parallelization of iterations -- a strategy once considered impractical because of the inherent iterative dependency in FOO. We provide theoretical guarantees for the reliability of our kernelized gradient estimation and the iteration complexity of SGD-based OptEx, confirming that estimation errors diminish to zero as historical gradients accumulate and that SGD-based OptEx enjoys an effective acceleration rate of $\Omega(\sqrt{N})$ over standard SGD given parallelism of N. We also use extensive empirical studies, including synthetic functions, reinforcement learning tasks, and neural network training across various datasets, to underscore the substantial efficiency improvements achieved by OptEx.
- Abstract(参考訳): 1次最適化(FOO)アルゴリズムは、機械学習や信号デノイングなど、多くの計算領域において重要である。
しかしながら、ニューラルネットワークトレーニングのような複雑なタスクへの適用は、収束のために多くの逐次イテレーションを必要とするため、大きな非効率性を必要とすることが多い。
これに対して,並列計算を利用して並列化ボトルネックを緩和し,FOOの効率を向上する第1のフレームワークであるOptExを,ほぼ並列化イテレーションで高速化する一階最適化を導入する。
OptExは、カーネル化された勾配推定を使用して、将来の勾配予測に勾配履歴を利用することで、イテレーションの並列化を可能にする。
我々は、カーネル化された勾配推定の信頼性とSGDベースのOptExの繰り返し複雑性の信頼性を理論的に保証し、過去の勾配が蓄積されるにつれて推定誤差がゼロに減少し、SGDベースのOptExがNの標準SGDよりも$\Omega(\sqrt{N})$の効果的な加速速度を享受していることを確認する。
関連論文リスト
- Optimization by Parallel Quasi-Quantum Annealing with Gradient-Based Sampling [0.0]
本研究では、連続緩和による勾配に基づく更新と準量子アナリング(QQA)を組み合わせた別のアプローチを提案する。
数値実験により,本手法はiSCOと学習型解法に匹敵する性能を有する汎用解法であることが示された。
論文 参考訳(メタデータ) (2024-09-02T12:55:27Z) - ENOT: Expectile Regularization for Fast and Accurate Training of Neural Optimal Transport [3.0237149871998095]
最適な輸送計画の正確かつ効率的に推定する新しい手法を提案する。
expectile Regularized Neural Transport Optimal (ENOT) と呼ばれる。
ENOTは二重ポテンシャルの学習過程に結合条件を強制する。
論文 参考訳(メタデータ) (2024-03-06T15:15:42Z) - Posterior Sampling with Delayed Feedback for Reinforcement Learning with
Linear Function Approximation [62.969796245827006]
Delayed-PSVI は楽観的な値に基づくアルゴリズムであり、後続サンプリングによる雑音摂動により値関数空間を探索する。
我々のアルゴリズムは、未知の遅延が存在する場合に、$widetildeO(sqrtd3H3 T + d2H2 E[tau]$最悪の後悔を実現する。
遅延LPSVIのための勾配に基づく近似サンプリングスキームをLangevin動的に組み込んだ。
論文 参考訳(メタデータ) (2023-10-29T06:12:43Z) - Federated Conditional Stochastic Optimization [110.513884892319]
条件付き最適化は、不変学習タスク、AUPRC、AMLなど、幅広い機械学習タスクで見られる。
本稿では,分散フェデレーション学習のためのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-04T01:47:37Z) - Ordering for Non-Replacement SGD [7.11967773739707]
我々は,アルゴリズムの非置換形式に対する収束率を改善する順序付けを求める。
我々は,強い凸関数と凸関数のステップサイズを一定かつ小さくするための最適順序付けを開発する。
さらに、注文とミニバッチを組み合わせることで、より複雑なニューラルネットワークにも適用できます。
論文 参考訳(メタデータ) (2023-06-28T00:46:58Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
本稿では,ニューラルネットワークを一般化し,トランスフォーマーアーキテクチャを用いて獲得関数を学習する,エンド・ツー・エンドの差別化可能な最初のメタBOフレームワークを提案する。
我々は、この強化学習(RL)によるエンドツーエンドのフレームワークを、ラベル付き取得データの欠如に対処できるようにします。
論文 参考訳(メタデータ) (2023-05-25T10:58:46Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
本稿では,UnRolled Federated Learning (SURF)を導入する。
提案手法は,この拡張における2つの課題,すなわち,非学習者へのデータセット全体の供給の必要性と,フェデレート学習の分散的性質に対処する。
論文 参考訳(メタデータ) (2023-05-24T17:26:22Z) - Versatile Single-Loop Method for Gradient Estimator: First and Second
Order Optimality, and its Application to Federated Learning [45.78238792836363]
本稿では,SLEDGE (Single-Loop-E Gradient Estimator) という単一ループアルゴリズムを提案する。
既存の手法とは異なり、SLEDGEは、(ii)2階最適、(ii)PL領域における、(iii)少ないデータ以下の複雑さの利点を持つ。
論文 参考訳(メタデータ) (2022-09-01T11:05:26Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
この作業は、一階情報を必要としない零次最適化(ZO)の反復である。
座標重要度サンプリングにおける優雅な設計により,ZO最適化法は複雑度と関数クエリコストの両面において効率的であることを示す。
論文 参考訳(メタデータ) (2020-12-21T17:29:58Z) - Efficient Learning of Generative Models via Finite-Difference Score
Matching [111.55998083406134]
有限差分で任意の順序方向微分を効率的に近似する汎用戦略を提案する。
我々の近似は関数評価にのみ関係しており、これは並列で実行でき、勾配計算は行わない。
論文 参考訳(メタデータ) (2020-07-07T10:05:01Z) - Towards Understanding Label Smoothing [36.54164997035046]
ラベルスムーズな正規化(LSR)は、トレーニングアルゴリズムによるディープニューラルネットワークにおいて大きな成功を収めている。
適切なLSRが分散を減少させることで収束を加速することを示す。
本稿では,TSLA(Two-Stage LAbel smoothing algorithm)を提案する。
論文 参考訳(メタデータ) (2020-06-20T20:36:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。