Evaluating the Factuality of Large Language Models using Large-Scale Knowledge Graphs
- URL: http://arxiv.org/abs/2404.00942v1
- Date: Mon, 1 Apr 2024 06:01:17 GMT
- Title: Evaluating the Factuality of Large Language Models using Large-Scale Knowledge Graphs
- Authors: Xiaoze Liu, Feijie Wu, Tianyang Xu, Zhuo Chen, Yichi Zhang, Xiaoqian Wang, Jing Gao,
- Abstract summary: Factuality issue is a critical concern for Large Language Models (LLMs)
We propose GraphEval to evaluate an LLM's performance using a substantially large test dataset.
Test dataset is retrieved from a large knowledge graph with more than 10 million facts without expensive human efforts.
- Score: 30.179703001666173
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The advent of Large Language Models (LLMs) has significantly transformed the AI landscape, enhancing machine learning and AI capabilities. Factuality issue is a critical concern for LLMs, as they may generate factually incorrect responses. In this paper, we propose GraphEval to evaluate an LLM's performance using a substantially large test dataset. Specifically, the test dataset is retrieved from a large knowledge graph with more than 10 million facts without expensive human efforts. Unlike conventional methods that evaluate LLMs based on generated responses, GraphEval streamlines the evaluation process by creating a judge model to estimate the correctness of the answers given by the LLM. Our experiments demonstrate that the judge model's factuality assessment aligns closely with the correctness of the LLM's generated outputs, while also substantially reducing evaluation costs. Besides, our findings offer valuable insights into LLM performance across different metrics and highlight the potential for future improvements in ensuring the factual integrity of LLM outputs. The code is publicly available at https://github.com/xz-liu/GraphEval.
Related papers
- LLM4VV: Exploring LLM-as-a-Judge for Validation and Verification Testsuites [6.796136787585992]
Large Language Models (LLM) are evolving and have significantly revolutionized the landscape of software development.
This paper explores the idea of judging tests used to evaluate compiler implementations of directive-based programming models.
arXiv Detail & Related papers (2024-08-21T15:54:17Z) - Evaluating Language Models for Generating and Judging Programming Feedback [4.743413681603463]
Large language models (LLMs) have transformed research and practice in a wide range of domains.
We evaluate the efficiency of open-source LLMs in generating high-quality feedback for programming assignments.
arXiv Detail & Related papers (2024-07-05T21:44:11Z) - DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph [70.79413606968814]
We introduce Dynamic Evaluation of LLMs via Adaptive Reasoning Graph Evolvement (DARG) to dynamically extend current benchmarks with controlled complexity and diversity.
Specifically, we first extract the reasoning graphs of data points in current benchmarks and then perturb the reasoning graphs to generate novel testing data.
Such newly generated test samples can have different levels of complexity while maintaining linguistic diversity similar to the original benchmarks.
arXiv Detail & Related papers (2024-06-25T04:27:53Z) - Harnessing Large Language Models as Post-hoc Correctors [6.288056740658763]
We show that an LLM can work as a post-hoc corrector to propose corrections for the predictions of an arbitrary Machine Learning model.
We form a contextual knowledge database by incorporating the dataset's label information and the ML model's predictions on the validation dataset.
Our experimental results on text analysis and the challenging molecular predictions show that model improves the performance of a number of models by up to 39%.
arXiv Detail & Related papers (2024-02-20T22:50:41Z) - PRE: A Peer Review Based Large Language Model Evaluator [14.585292530642603]
Existing paradigms rely on either human annotators or model-based evaluators to evaluate the performance of LLMs.
We propose a novel framework that can automatically evaluate LLMs through a peer-review process.
arXiv Detail & Related papers (2024-01-28T12:33:14Z) - LLMRefine: Pinpointing and Refining Large Language Models via Fine-Grained Actionable Feedback [65.84061725174269]
Recent large language models (LLM) are leveraging human feedback to improve their generation quality.
We propose LLMRefine, an inference time optimization method to refine LLM's output.
We conduct experiments on three text generation tasks, including machine translation, long-form question answering (QA), and topical summarization.
LLMRefine consistently outperforms all baseline approaches, achieving improvements up to 1.7 MetricX points on translation tasks, 8.1 ROUGE-L on ASQA, 2.2 ROUGE-L on topical summarization.
arXiv Detail & Related papers (2023-11-15T19:52:11Z) - Reflection-Tuning: Data Recycling Improves LLM Instruction-Tuning [79.32236399694077]
Low-quality data in the training set are usually detrimental to instruction tuning.
We propose a novel method, termed "reflection-tuning"
This approach utilizes an oracle LLM to recycle the original training data by introspecting and enhancing the quality of instructions and responses in the data.
arXiv Detail & Related papers (2023-10-18T05:13:47Z) - Assessing the Reliability of Large Language Model Knowledge [78.38870272050106]
Large language models (LLMs) have been treated as knowledge bases due to their strong performance in knowledge probing tasks.
How do we evaluate the capabilities of LLMs to consistently produce factually correct answers?
We propose MOdel kNowledge relIabiliTy scORe (MONITOR), a novel metric designed to directly measure LLMs' factual reliability.
arXiv Detail & Related papers (2023-10-15T12:40:30Z) - Evaluating Large Language Models at Evaluating Instruction Following [54.49567482594617]
We introduce a challenging meta-evaluation benchmark, LLMBar, designed to test the ability of an LLM evaluator in discerning instruction-following outputs.
We discover that different evaluators exhibit distinct performance on LLMBar and even the highest-scoring ones have substantial room for improvement.
arXiv Detail & Related papers (2023-10-11T16:38:11Z) - DyVal: Dynamic Evaluation of Large Language Models for Reasoning Tasks [112.66827096358857]
We introduce DyVal, a protocol for dynamic evaluation of large language models (LLMs)
Based on our framework, we build graph-informed DyVal by leveraging the structural advantage of directed acyclic graphs.
We evaluate various LLMs ranging from Flan-T5-large to GPT-3.5-Turbo and GPT-4.
arXiv Detail & Related papers (2023-09-29T12:04:14Z) - LLMMaps -- A Visual Metaphor for Stratified Evaluation of Large Language
Models [13.659853119356507]
Large Language Models (LLMs) have revolutionized natural language processing and demonstrated impressive capabilities in various tasks.
They are prone to hallucinations, where the model exposes incorrect or false information in its responses.
We propose LLMMaps as a novel visualization technique that enables users to evaluate LLMs' performance with respect to Q&A datasets.
arXiv Detail & Related papers (2023-04-02T05:47:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.