論文の概要: InfuserKI: Enhancing Large Language Models with Knowledge Graphs via
Infuser-Guided Knowledge Integration
- arxiv url: http://arxiv.org/abs/2402.11441v1
- Date: Sun, 18 Feb 2024 03:36:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-20 21:09:11.947062
- Title: InfuserKI: Enhancing Large Language Models with Knowledge Graphs via
Infuser-Guided Knowledge Integration
- Title(参考訳): InfuserKI:Infuser-Guided Knowledge Integrationによる知識グラフによる大規模言語モデルの強化
- Authors: Fali Wang, Runxue Bao, Suhang Wang, Wenchao Yu, Yanchi Liu, Wei Cheng,
Haifeng Chen
- Abstract要約: 大規模言語モデル(LLM)は、様々な領域にまたがる顕著なオープンジェネレーション機能を示している。
新しい知識を注入すると、以前に獲得した知識を忘れるリスクが生じる。
Infuser-Guided Knowledge Integration フレームワークを提案する。
- 参考スコア(独自算出の注目度): 61.554209059971576
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Though Large Language Models (LLMs) have shown remarkable open-generation
capabilities across diverse domains, they struggle with knowledge-intensive
tasks. To alleviate this issue, knowledge integration methods have been
proposed to enhance LLMs with domain-specific knowledge graphs using external
modules. However, they suffer from data inefficiency as they require both known
and unknown knowledge for fine-tuning. Thus, we study a novel problem of
integrating unknown knowledge into LLMs efficiently without unnecessary overlap
of known knowledge. Injecting new knowledge poses the risk of forgetting
previously acquired knowledge. To tackle this, we propose a novel
Infuser-Guided Knowledge Integration (InfuserKI) framework that utilizes
transformer internal states to determine whether to enhance the original LLM
output with additional information, thereby effectively mitigating knowledge
forgetting. Evaluations on the UMLS-2.5k and MetaQA domain knowledge graphs
demonstrate that InfuserKI can effectively acquire new knowledge and outperform
state-of-the-art baselines by 9% and 6%, respectively, in reducing knowledge
forgetting.
- Abstract(参考訳): 大規模言語モデル(LLM)は、様々な領域にまたがる顕著なオープンジェネレーション能力を示しているが、彼らは知識集約的なタスクに苦労している。
この問題を軽減するため、外部モジュールを用いたドメイン固有の知識グラフでllmを強化するための知識統合手法が提案されている。
しかし、微調整には既知の知識と未知の知識の両方を必要とするため、データの非効率に苦しむ。
そこで本研究では,未知の知識をLLMに効率的に統合する新たな課題について検討する。
新しい知識を注入すると、以前に獲得した知識を忘れるリスクが生じる。
そこで本研究では,トランスフォーマティブ内部状態を利用した新しい知識統合(infuserki,infuserki,infuserki,infuserki)フレームワークを提案する。
UMLS-2.5k と MetaQA ドメイン知識グラフの評価は、InfuserKI が知識の忘れを減らすために、新しい知識を効果的に獲得し、最先端のベースラインを9% と 6% に向上させることができることを示している。
関連論文リスト
- KaLM: Knowledge-aligned Autoregressive Language Modeling via Dual-view Knowledge Graph Contrastive Learning [74.21524111840652]
本稿では、textitKnowledge-aligned Language Modeling アプローチである textbfKaLM を提案する。
明示的な知識アライメントと暗黙的な知識アライメントという共同目的を通じて、KG知識と整合するように、自己回帰的な大規模言語モデルを微調整する。
特に,本手法は知識駆動型タスクの評価において顕著な性能向上を実現している。
論文 参考訳(メタデータ) (2024-12-06T11:08:24Z) - Fine-Grained Stateful Knowledge Exploration: A Novel Paradigm for Integrating Knowledge Graphs with Large Language Models [19.049828741139425]
大きな言語モデル(LLM)は印象的な能力を示していますが、その知識を更新することは大きな課題です。
既存のほとんどのメソッドは、質問を目的として扱うパラダイムを使用し、関連する知識は知識グラフから漸進的に取得される。
本稿では,情報粒度ミスマッチ問題に対処する,微粒なステートフル知識探索のための新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2024-01-24T13:36:50Z) - A Comprehensive Study of Knowledge Editing for Large Language Models [82.65729336401027]
大規模言語モデル(LLM)は、人間のコミュニケーションを忠実に反映したテキストの理解と生成の素晴らしい能力を示している。
本稿では,知識編集の問題を定義し,最先端アプローチの包括的レビューを行う。
我々は,代表的知識編集アプローチの総合的評価のための新しいベンチマークであるKnowEditを紹介した。
論文 参考訳(メタデータ) (2024-01-02T16:54:58Z) - Knowledge Unlearning for LLMs: Tasks, Methods, and Challenges [11.228131492745842]
大規模言語モデル(LLM)は、自然言語処理における新しい研究パラダイムを刺激している。
知識に基づく質問応答と推論の優れた能力にもかかわらず、欠陥や有害な知識を保持する可能性は、悪意のあるアプリケーションにリスクをもたらす。
機械学習の類似研究から派生した知識アンラーニングは、この問題に対処するための有望な道を示す。
論文 参考訳(メタデータ) (2023-11-27T12:37:51Z) - Beyond Factuality: A Comprehensive Evaluation of Large Language Models
as Knowledge Generators [78.63553017938911]
大規模言語モデル(LLM)は、下流の知識集約タスクのための情報検索技術より優れている。
しかし、コミュニティの懸念は、この無検閲の知識を使用することの事実と潜在的意味について多岐にわたる。
本研究では,6つの重要な視点から生成した知識を評価するために設計されたCONNERを紹介する。
論文 参考訳(メタデータ) (2023-10-11T08:22:37Z) - Self-Knowledge Guided Retrieval Augmentation for Large Language Models [59.771098292611846]
大規模言語モデル(LLM)はタスク固有の微調整なしで優れた性能を示す。
検索に基づく手法は、非パラメトリックな世界知識を提供し、質問応答のようなタスクのパフォーマンスを向上させることができる。
SKR(Self-Knowledge guided Retrieval augmentation)は、LLMがこれまで遭遇した質問を参照できるようにする、シンプルで効果的な方法である。
論文 参考訳(メタデータ) (2023-10-08T04:22:33Z) - Knowledge Rumination for Pre-trained Language Models [77.55888291165462]
本稿では,学習前の言語モデルが外部コーパスから検索することなく,関連する潜在知識を活用できるようにするための,Knowledge Ruminationと呼ばれる新しいパラダイムを提案する。
本稿では,RoBERTa,DeBERTa,GPT-3などの言語モデルに適用する。
論文 参考訳(メタデータ) (2023-05-15T15:47:09Z) - LM-CORE: Language Models with Contextually Relevant External Knowledge [13.451001884972033]
モデルパラメータに大量の知識を格納することは、絶え間なく増加する知識とリソースの要求を考えると、準最適である、と我々は主張する。
LM-CORE - これを実現するための一般的なフレームワークで、外部の知識ソースから言語モデルのトレーニングをテキストデカップリングすることができる。
実験結果から, LM-COREは知識探索タスクにおいて, 最先端の知識強化言語モデルよりも大きく, 堅牢な性能を実現していることがわかった。
論文 参考訳(メタデータ) (2022-08-12T18:59:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。