Advanced Drug Interaction Event Prediction
- URL: http://arxiv.org/abs/2402.11472v4
- Date: Wed, 22 May 2024 19:39:52 GMT
- Title: Advanced Drug Interaction Event Prediction
- Authors: Yingying Wang, Yun Xiong, Xixi Wu, Xiangguo Sun, Jiawei Zhang,
- Abstract summary: Existing models often neglect the distinctive characteristics of individual event classes when integrating multi-source features.
We propose a hierarchical pre-training task that aims to capture crucial aspects of drug molecular structure and intermolecular interactions.
We construct a graph by strategically sampling data from distinct event types and design subgraph prompts utilizing pre-trained node features.
- Score: 15.69547371747469
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting drug-drug interaction adverse events, so-called DDI events, is increasingly valuable as it facilitates the study of mechanisms underlying drug use or adverse reactions. Existing models often neglect the distinctive characteristics of individual event classes when integrating multi-source features, which contributes to systematic unfairness when dealing with highly imbalanced event samples. Moreover, the limited capacity of these models to abstract the unique attributes of each event subclass considerably hampers their application in predicting rare drug-drug interaction events with a limited sample size. Reducing dataset bias and abstracting event subclass characteristics are two unresolved challenges. Recently, prompt tuning with frozen pre-trained graph models, namely "pre-train, prompt, fine-tune" strategy, has demonstrated impressive performance in few-shot tasks. Motivated by this, we propose an advanced method as a solution to address these aforementioned challenges. Specifically, our proposed approach entails a hierarchical pre-training task that aims to capture crucial aspects of drug molecular structure and intermolecular interactions while effectively mitigating implicit dataset bias within the node embeddings. Furthermore, we construct a prototypical graph by strategically sampling data from distinct event types and design subgraph prompts utilizing pre-trained node features. Through comprehensive benchmark experiments, we validate the efficacy of our subgraph prompts in accurately representing event classes and achieve exemplary results in both overall and subclass prediction tasks.
Related papers
- Robust Molecular Property Prediction via Densifying Scarce Labeled Data [51.55434084913129]
In drug discovery, compounds most critical for advancing research often lie beyond the training set.<n>We propose a novel meta-learning-based approach that leverages unlabeled data to interpolate between in-distribution (ID) and out-of-distribution (OOD) data.<n>We demonstrate significant performance gains on challenging real-world datasets.
arXiv Detail & Related papers (2025-06-13T15:27:40Z) - Enforcing Fundamental Relations via Adversarial Attacks on Input Parameter Correlations [76.2226569692207]
Correlations between input parameters play a crucial role in many scientific classification tasks.
We present a new adversarial attack algorithm called Random Distribution Shuffle Attack (RDSA)
We demonstrate the RDSA effectiveness on six classification tasks.
arXiv Detail & Related papers (2025-01-09T21:45:09Z) - KITE-DDI: A Knowledge graph Integrated Transformer Model for accurately predicting Drug-Drug Interaction Events from Drug SMILES and Biomedical Knowledge Graph [0.11049608786515838]
Drug-Drug Interactions (DDI) can cause significant bodily injury and even death.
Most contemporary research for predicting DDI events relies on either information from Biomedical Knowledge graphs (KG) or drug SMILES.
In this study, we propose a KG-integrated Transformer architecture to generate an end-to-end fully automated Machine Learning pipeline.
arXiv Detail & Related papers (2024-12-08T00:49:57Z) - RGDA-DDI: Residual graph attention network and dual-attention based framework for drug-drug interaction prediction [4.044376666671973]
We propose RGDA-DDI, a residual graph attention network (residual-GAT) and dual-attention based framework for drug-drug interaction prediction.
A series of evaluation metrics demonstrate that the RGDA-DDI significantly improved DDI prediction performance on two public benchmark datasets.
arXiv Detail & Related papers (2024-08-27T17:13:56Z) - Learning to Describe for Predicting Zero-shot Drug-Drug Interactions [54.172575323610175]
Adverse drug-drug interactions can compromise the effectiveness of concurrent drug administration.
Traditional computational methods for DDI prediction may fail to capture interactions for new drugs due to the lack of knowledge.
We propose TextDDI with a language model-based DDI predictor and a reinforcement learning(RL)-based information selector.
arXiv Detail & Related papers (2024-03-13T09:42:46Z) - DTIAM: A unified framework for predicting drug-target interactions,
binding affinities and activation/inhibition mechanisms [9.671391525450716]
We introduce a unified framework called DTIAM, which aims to predict interactions, binding affinities, and activation/inhibition mechanisms between drugs and targets.
DTIAM learns drug and target representations from large amounts of label-free data through self-supervised pre-training.
It achieves substantial performance improvement over other state-of-the-art methods in all tasks, particularly in the cold start scenario.
arXiv Detail & Related papers (2023-12-23T13:27:41Z) - PGraphDTA: Improving Drug Target Interaction Prediction using Protein
Language Models and Contact Maps [4.590060921188914]
Key aspect of drug discovery involves identifying novel drug-target (DT) interactions.
Protein-ligand interactions exhibit a continuum of binding strengths, known as binding affinity.
We propose novel enhancements to enhance their performance.
arXiv Detail & Related papers (2023-10-06T05:00:25Z) - Abnormal Event Detection via Hypergraph Contrastive Learning [54.80429341415227]
Abnormal event detection plays an important role in many real applications.
In this paper, we study the unsupervised abnormal event detection problem in Attributed Heterogeneous Information Network.
A novel hypergraph contrastive learning method, named AEHCL, is proposed to fully capture abnormal event patterns.
arXiv Detail & Related papers (2023-04-02T08:23:20Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
Drug-Target Affinity (DTA) is of vital importance in early-stage drug discovery.
wet experiments remain the most reliable method, but they are time-consuming and resource-intensive.
Existing methods have primarily focused on developing techniques based on the available DTA data, without adequately addressing the data scarcity issue.
We present the SSM-DTA framework, which incorporates three simple yet highly effective strategies.
arXiv Detail & Related papers (2022-06-20T14:53:25Z) - ACP++: Action Co-occurrence Priors for Human-Object Interaction
Detection [102.9428507180728]
A common problem in the task of human-object interaction (HOI) detection is that numerous HOI classes have only a small number of labeled examples.
We observe that there exist natural correlations and anti-correlations among human-object interactions.
We present techniques to learn these priors and leverage them for more effective training, especially on rare classes.
arXiv Detail & Related papers (2021-09-09T06:02:50Z) - Detecting Human-Object Interactions with Action Co-occurrence Priors [108.31956827512376]
A common problem in human-object interaction (HOI) detection task is that numerous HOI classes have only a small number of labeled examples.
We observe that there exist natural correlations and anti-correlations among human-object interactions.
We present techniques to learn these priors and leverage them for more effective training, especially in rare classes.
arXiv Detail & Related papers (2020-07-17T02:47:45Z) - Drug-Drug Interaction Prediction with Wasserstein Adversarial
Autoencoder-based Knowledge Graph Embeddings [22.562175708415392]
We propose a new knowledge graph embedding framework for drug-drug interactions.
In our framework, the autoencoder is employed to generate high-quality negative samples.
The discriminator learns the embeddings of drugs and interactions based on both positive and negative triplets.
arXiv Detail & Related papers (2020-04-15T21:03:29Z) - Deep Collaborative Embedding for information cascade prediction [58.90540495232209]
We propose a novel model called Deep Collaborative Embedding (DCE) for information cascade prediction.
We propose an auto-encoder based collaborative embedding framework to learn the node embeddings with cascade collaboration and node collaboration.
The results of extensive experiments conducted on real-world datasets verify the effectiveness of our approach.
arXiv Detail & Related papers (2020-01-18T13:32:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.