KITE-DDI: A Knowledge graph Integrated Transformer Model for accurately predicting Drug-Drug Interaction Events from Drug SMILES and Biomedical Knowledge Graph
- URL: http://arxiv.org/abs/2412.05770v1
- Date: Sun, 08 Dec 2024 00:49:57 GMT
- Title: KITE-DDI: A Knowledge graph Integrated Transformer Model for accurately predicting Drug-Drug Interaction Events from Drug SMILES and Biomedical Knowledge Graph
- Authors: Azwad Tamir, Jiann-Shiun Yuan,
- Abstract summary: Drug-Drug Interactions (DDI) can cause significant bodily injury and even death.
Most contemporary research for predicting DDI events relies on either information from Biomedical Knowledge graphs (KG) or drug SMILES.
In this study, we propose a KG-integrated Transformer architecture to generate an end-to-end fully automated Machine Learning pipeline.
- Score: 0.11049608786515838
- License:
- Abstract: It is a common practice in modern medicine to prescribe multiple medications simultaneously to treat diseases. However, these medications could have adverse reactions between them, known as Drug-Drug Interactions (DDI), which have the potential to cause significant bodily injury and could even be fatal. Hence, it is essential to identify all the DDI events before prescribing multiple drugs to a patient. Most contemporary research for predicting DDI events relies on either information from Biomedical Knowledge graphs (KG) or drug SMILES, with very few managing to merge data from both to make predictions. While others use heuristic algorithms to extract features from SMILES and KGs, which are then fed into a Deep Learning framework to generate output. In this study, we propose a KG-integrated Transformer architecture to generate an end-to-end fully automated Machine Learning pipeline for predicting DDI events with high accuracy. The algorithm takes full-scale molecular SMILES sequences of a pair of drugs and a biomedical KG as input and predicts the interaction between the two drugs with high precision. The results show superior performance in two different benchmark datasets compared to existing state-of-the-art models especially when the test and training sets contain distinct sets of drug molecules. This demonstrates the strong generalization of the proposed model, indicating its potential for DDI event prediction for newly developed drugs. The model does not depend on heuristic models for generating embeddings and has a minimal number of hyperparameters, making it easy to use while demonstrating outstanding performance in low-data scenarios.
Related papers
- RGDA-DDI: Residual graph attention network and dual-attention based framework for drug-drug interaction prediction [4.044376666671973]
We propose RGDA-DDI, a residual graph attention network (residual-GAT) and dual-attention based framework for drug-drug interaction prediction.
A series of evaluation metrics demonstrate that the RGDA-DDI significantly improved DDI prediction performance on two public benchmark datasets.
arXiv Detail & Related papers (2024-08-27T17:13:56Z) - Physical formula enhanced multi-task learning for pharmacokinetics prediction [54.13787789006417]
A major challenge for AI-driven drug discovery is the scarcity of high-quality data.
We develop a formula enhanced mul-ti-task learning (PEMAL) method that predicts four key parameters of pharmacokinetics simultaneously.
Our experiments reveal that PEMAL significantly lowers the data demand, compared to typical Graph Neural Networks.
arXiv Detail & Related papers (2024-04-16T07:42:55Z) - Emerging Drug Interaction Prediction Enabled by Flow-based Graph Neural
Network with Biomedical Network [69.16939798838159]
We propose EmerGNN, a graph neural network (GNN) that can effectively predict interactions for emerging drugs.
EmerGNN learns pairwise representations of drugs by extracting the paths between drug pairs, propagating information from one drug to the other, and incorporating the relevant biomedical concepts on the paths.
Overall, EmerGNN has higher accuracy than existing approaches in predicting interactions for emerging drugs and can identify the most relevant information on the biomedical network.
arXiv Detail & Related papers (2023-11-15T06:34:00Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
Drug combination therapy is a well-established strategy for disease treatment with better effectiveness and less safety degradation.
Deep learning models have emerged as an efficient way to discover synergistic combinations.
Our framework achieves state-of-the-art results in comparison with other deep learning-based methods.
arXiv Detail & Related papers (2023-01-14T15:07:43Z) - DDI Prediction via Heterogeneous Graph Attention Networks [0.0]
Polypharmacy is the use of multiple drugs together.
Drug-drug interaction (DDI) is the activity that occurs when the impact of one drug changes when combined with another.
We present a novel heterogeneous graph attention model, HAN-DDI, to predict drug-drug interactions.
arXiv Detail & Related papers (2022-07-12T16:59:06Z) - HyGNN: Drug-Drug Interaction Prediction via Hypergraph Neural Network [0.0]
Drug-Drug Interactions (DDIs) may hamper the functionalities of drugs, and in the worst scenario, they may lead to adverse drug reactions (ADRs)
This paper proposes a novel Hypergraph Neural Network (HyGNN) model based on only the SMILES string of drugs, available for any drug, for the DDI prediction problem.
Our proposed HyGNN model effectively predicts DDIs and impressively outperforms the baselines with a maximum ROC-AUC and PR-AUC of 97.9% and 98.1%, respectively.
arXiv Detail & Related papers (2022-06-25T22:48:27Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
Drug-Target Affinity (DTA) is of vital importance in early-stage drug discovery.
wet experiments remain the most reliable method, but they are time-consuming and resource-intensive.
Existing methods have primarily focused on developing techniques based on the available DTA data, without adequately addressing the data scarcity issue.
We present the SSM-DTA framework, which incorporates three simple yet highly effective strategies.
arXiv Detail & Related papers (2022-06-20T14:53:25Z) - Multi-View Substructure Learning for Drug-Drug Interaction Prediction [69.34322811160912]
We propose a novel multi- view drug substructure network for DDI prediction (MSN-DDI)
MSN-DDI learns chemical substructures from both the representations of the single drug (intra-view) and the drug pair (inter-view) simultaneously and utilizes the substructures to update the drug representation iteratively.
Comprehensive evaluations demonstrate that MSN-DDI has almost solved DDI prediction for existing drugs by achieving a relatively improved accuracy of 19.32% and an over 99% accuracy under the transductive setting.
arXiv Detail & Related papers (2022-03-28T05:44:29Z) - AttentionDDI: Siamese Attention-based Deep Learning method for drug-drug
interaction predictions [0.9176056742068811]
Drug-drug interactions (DDIs) refer to processes triggered by the administration of two or more drugs leading to side effects beyond those observed when drugs are administered by themselves.
Due to the massive number of possible drug pairs, it is nearly impossible to experimentally test all combinations and discover previously unobserved side effects.
We propose a Siamese self-attention multi-modal neural network for DDI prediction that integrates multiple drug similarity measures.
arXiv Detail & Related papers (2020-12-24T13:33:07Z) - SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge
Graph Summarization [64.56399911605286]
We propose SumGNN: knowledge summarization graph neural network, which is enabled by a subgraph extraction module.
SumGNN outperforms the best baseline by up to 5.54%, and the performance gain is particularly significant in low data relation types.
arXiv Detail & Related papers (2020-10-04T00:14:57Z) - Drug-Drug Interaction Prediction with Wasserstein Adversarial
Autoencoder-based Knowledge Graph Embeddings [22.562175708415392]
We propose a new knowledge graph embedding framework for drug-drug interactions.
In our framework, the autoencoder is employed to generate high-quality negative samples.
The discriminator learns the embeddings of drugs and interactions based on both positive and negative triplets.
arXiv Detail & Related papers (2020-04-15T21:03:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.