PGraphDTA: Improving Drug Target Interaction Prediction using Protein
Language Models and Contact Maps
- URL: http://arxiv.org/abs/2310.04017v3
- Date: Sun, 11 Feb 2024 05:06:47 GMT
- Title: PGraphDTA: Improving Drug Target Interaction Prediction using Protein
Language Models and Contact Maps
- Authors: Rakesh Bal, Yijia Xiao, Wei Wang
- Abstract summary: Key aspect of drug discovery involves identifying novel drug-target (DT) interactions.
Protein-ligand interactions exhibit a continuum of binding strengths, known as binding affinity.
We propose novel enhancements to enhance their performance.
- Score: 4.590060921188914
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Developing and discovering new drugs is a complex and resource-intensive
endeavor that often involves substantial costs, time investment, and safety
concerns. A key aspect of drug discovery involves identifying novel drug-target
(DT) interactions. Existing computational methods for predicting DT
interactions have primarily focused on binary classification tasks, aiming to
determine whether a DT pair interacts or not. However, protein-ligand
interactions exhibit a continuum of binding strengths, known as binding
affinity, presenting a persistent challenge for accurate prediction. In this
study, we investigate various techniques employed in Drug Target Interaction
(DTI) prediction and propose novel enhancements to enhance their performance.
Our approaches include the integration of Protein Language Models (PLMs) and
the incorporation of Contact Map information as an inductive bias within
current models. Through extensive experimentation, we demonstrate that our
proposed approaches outperform the baseline models considered in this study,
presenting a compelling case for further development in this direction. We
anticipate that the insights gained from this work will significantly narrow
the search space for potential drugs targeting specific proteins, thereby
accelerating drug discovery. Code and data for PGraphDTA are available at
https://github.com/Yijia-Xiao/PgraphDTA/.
Related papers
- GramSeq-DTA: A grammar-based drug-target affinity prediction approach fusing gene expression information [1.2289361708127877]
We propose GramSeq-DTA, which integrates chemical perturbation information with the structural information of drugs and targets.
Our approach outperforms the current state-of-the-art DTA prediction models when validated on widely used DTA datasets.
arXiv Detail & Related papers (2024-11-03T03:17:09Z) - FusionDTI: Fine-grained Binding Discovery with Token-level Fusion for Drug-Target Interaction [23.521628951362647]
This paper introduces a novel model, called FusionDTI, which uses a token-level Fusion module to learn fine-grained information for Drug-Target Interaction.
In particular, our FusionDTI model uses the SELFIES representation of drugs to mitigate sequence fragment invalidation.
Our experiments show that our proposed FusionDTI model achieves the best performance in DTI prediction compared with seven existing state-of-the-art baselines.
arXiv Detail & Related papers (2024-06-03T14:48:54Z) - A Cross-Field Fusion Strategy for Drug-Target Interaction Prediction [85.2792480737546]
Existing methods fail to utilize global protein information during DTI prediction.
Cross-field information fusion strategy is employed to acquire local and global protein information.
Siamese drug-target interaction SiamDTI prediction method achieves higher accuracy levels than other state-of-the-art (SOTA) methods on novel drugs and targets.
arXiv Detail & Related papers (2024-05-23T13:25:20Z) - Learning to Denoise Biomedical Knowledge Graph for Robust Molecular Interaction Prediction [50.7901190642594]
We propose BioKDN (Biomedical Knowledge Graph Denoising Network) for robust molecular interaction prediction.
BioKDN refines the reliable structure of local subgraphs by denoising noisy links in a learnable manner.
It maintains consistent and robust semantics by smoothing relations around the target interaction.
arXiv Detail & Related papers (2023-12-09T07:08:00Z) - SynerGPT: In-Context Learning for Personalized Drug Synergy Prediction
and Drug Design [64.69434941796904]
We propose a novel setting and models for in-context drug synergy learning.
We are given a small "personalized dataset" of 10-20 drug synergy relationships in the context of specific cancer cell targets.
Our goal is to predict additional drug synergy relationships in that context.
arXiv Detail & Related papers (2023-06-19T17:03:46Z) - ResDTA: Predicting Drug-Target Binding Affinity Using Residual Skip
Connections [0.0]
We present a deep learning-based methodology for predicting DT binding affinities using just sequencing information from both targets and drugs.
The proposed model achieves the best Concordance Index (CI) performance in one of the largest benchmark datasets.
arXiv Detail & Related papers (2023-03-20T20:27:11Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
Drug combination therapy is a well-established strategy for disease treatment with better effectiveness and less safety degradation.
Deep learning models have emerged as an efficient way to discover synergistic combinations.
Our framework achieves state-of-the-art results in comparison with other deep learning-based methods.
arXiv Detail & Related papers (2023-01-14T15:07:43Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
Drug-Target Affinity (DTA) is of vital importance in early-stage drug discovery.
wet experiments remain the most reliable method, but they are time-consuming and resource-intensive.
Existing methods have primarily focused on developing techniques based on the available DTA data, without adequately addressing the data scarcity issue.
We present the SSM-DTA framework, which incorporates three simple yet highly effective strategies.
arXiv Detail & Related papers (2022-06-20T14:53:25Z) - Associative Learning Mechanism for Drug-Target Interaction Prediction [6.107658437700639]
Drug-target affinity (DTA) represents the strength of drug-target interaction (DTI)
Traditional methods lack the interpretability of the DTA prediction process.
This paper proposes a DTA prediction method with interactive learning and an autoencoder mechanism.
arXiv Detail & Related papers (2022-05-24T14:25:28Z) - Improved Drug-target Interaction Prediction with Intermolecular Graph
Transformer [98.8319016075089]
We propose a novel approach to model intermolecular information with a three-way Transformer-based architecture.
Intermolecular Graph Transformer (IGT) outperforms state-of-the-art approaches by 9.1% and 20.5% over the second best for binding activity and binding pose prediction respectively.
IGT exhibits promising drug screening ability against SARS-CoV-2 by identifying 83.1% active drugs that have been validated by wet-lab experiments with near-native predicted binding poses.
arXiv Detail & Related papers (2021-10-14T13:28:02Z) - An Interpretable Framework for Drug-Target Interaction with Gated Cross
Attention [4.746451824931381]
In this study, we propose a novel interpretable framework that can provide reasonable cues for the interaction sites.
We elaborately design a gated cross-attention mechanism that crossly attends drug and target features by constructing explicit interactions between these features.
The experimental results show the efficacy of the proposed method in two DTI datasets.
arXiv Detail & Related papers (2021-09-17T05:53:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.