論文の概要: Verifiably Following Complex Robot Instructions with Foundation Models
- arxiv url: http://arxiv.org/abs/2402.11498v1
- Date: Sun, 18 Feb 2024 08:05:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-20 20:44:54.459855
- Title: Verifiably Following Complex Robot Instructions with Foundation Models
- Title(参考訳): 基礎モデルを用いた複雑なロボット指導の検証
- Authors: Benedict Quartey, Eric Rosen, Stefanie Tellex, George Konidaris
- Abstract要約: ロボットが表現的・長期的指示に従うことを可能にするために,動作計画(LIMP)のための言語指導基盤を提案する。
LIMPは、インストラクターの意図したモチベーションとロボットのアライメントを明らかにする説明可能な命令表現を構築する。
実環境におけるLIMPを,35の複合時間的語彙命令の集合で実証する。
- 参考スコア(独自算出の注目度): 18.09584127867647
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Enabling robots to follow complex natural language instructions is an
important yet challenging problem. People want to flexibly express constraints,
refer to arbitrary landmarks and verify behavior when instructing robots.
Conversely, robots must disambiguate human instructions into specifications and
ground instruction referents in the real world. We propose Language Instruction
grounding for Motion Planning (LIMP), a system that leverages foundation models
and temporal logics to generate instruction-conditioned semantic maps that
enable robots to verifiably follow expressive and long-horizon instructions
with open vocabulary referents and complex spatiotemporal constraints. In
contrast to prior methods for using foundation models in robot task execution,
LIMP constructs an explainable instruction representation that reveals the
robot's alignment with an instructor's intended motives and affords the
synthesis of robot behaviors that are correct-by-construction. We demonstrate
LIMP in three real-world environments, across a set of 35 complex
spatiotemporal instructions, showing the generality of our approach and the
ease of deployment in novel unstructured domains. In our experiments, LIMP can
spatially ground open-vocabulary referents and synthesize constraint-satisfying
plans in 90% of object-goal navigation and 71% of mobile manipulation
instructions. See supplementary videos at https://robotlimp.github.io
- Abstract(参考訳): 複雑な自然言語命令に従うロボットの開発は、重要な課題である。
人々は柔軟に制約を表現し、任意のランドマークを参照し、ロボットに指示するときの行動を検証することを望んでいます。
逆に、ロボットは人間の指示を、現実世界の仕様や地上の指示にあいまいにする必要がある。
動作計画のための言語指導基盤(LIMP: Language Instruction Grounding for Motion Planning)を提案する。これは、基本モデルと時間論理を利用して、ロボットがオープンな語彙参照と複雑な時空間制約を持つ表現的・長期的指示を確実に追従できるように、指示条件付きセマンティックマップを生成するシステムである。
ロボットタスクの実行において基礎モデルを使用する従来の方法とは対照的に、LIMPは、インストラクターの意図する動機とロボットのアライメントを明らかにする説明可能な指示表現を構築し、正しいロボット動作の合成を行う。
LIMPは,35の複雑な時空間命令からなる実世界の3つの環境において,我々のアプローチの一般化と新規な非構造ドメインへの展開の容易さを示す。
実験では,オープンボキャブラリーレファレンスを空間的に接地し,対象方向ナビゲーションの90%と移動操作命令の71%で制約満足プランを合成する。
補足ビデオはhttps://robotlimp.github.io
関連論文リスト
- $π_0$: A Vision-Language-Action Flow Model for General Robot Control [77.32743739202543]
本稿では,インターネット規模のセマンティック知識を継承するために,事前学習された視覚言語モデル(VLM)上に構築された新しいフローマッチングアーキテクチャを提案する。
我々は,事前訓練後のタスクをゼロショットで実行し,人からの言語指導に追従し,微調整で新たなスキルを習得する能力の観点から,我々のモデルを評価した。
論文 参考訳(メタデータ) (2024-10-31T17:22:30Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
本稿では,コード生成を利用したデプロイ可能なロボット操作パイプラインのためのプラットフォームである textbfRobotScript を提案する。
自由形自然言語におけるロボット操作タスクのためのコード生成ベンチマークも提案する。
我々は,Franka と UR5 のロボットアームを含む,複数のロボットエボディメントにまたがるコード生成フレームワークの適応性を実証した。
論文 参考訳(メタデータ) (2024-02-22T15:12:00Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
大きな言語モデル(LLM)は、オープン語彙タスクを実行するロボットエージェントを作成することで、驚くべき成果を上げている。
LLMを用いた部分的に観測可能なタスクのための対話型計画手法を提案する。
論文 参考訳(メタデータ) (2023-12-11T22:54:44Z) - WALL-E: Embodied Robotic WAiter Load Lifting with Large Language Model [92.90127398282209]
本稿では,最新のLarge Language Models(LLM)と既存のビジュアルグラウンドとロボットグルーピングシステムを統合する可能性について検討する。
本稿では,この統合の例としてWALL-E (Embodied Robotic WAiter load lifting with Large Language model)を紹介する。
我々は,このLCMを利用したシステムを物理ロボットに展開し,よりユーザフレンドリなインタフェースで指導誘導型把握タスクを実現する。
論文 参考訳(メタデータ) (2023-08-30T11:35:21Z) - CARTIER: Cartographic lAnguage Reasoning Targeted at Instruction
Execution for Robots [9.393951367344894]
本研究は、空間計画とナビゲーションのための自然言語インタフェースの交わりにおける問題に対処する大規模言語モデルの能力について考察する。
我々は、ロボット工学で一般的に見られる従来の明示的な手続き的指示よりも、自然な会話に近い複雑な指示に従うことに重点を置いている。
我々は3DシミュレータAI2Thorを利用して、大規模な家庭用クエリシナリオを作成し、40のオブジェクトタイプに対して複雑な言語クエリを追加することで拡張する。
論文 参考訳(メタデータ) (2023-07-21T19:09:37Z) - Language to Rewards for Robotic Skill Synthesis [37.21434094015743]
我々は,大規模言語モデル(LLM)を利用して,様々なロボットタスクを最適化し,達成可能な報酬パラメータを定義する新しいパラダイムを提案する。
LLMが生成する中間インタフェースとして報酬を用いることで、ハイレベルな言語命令と修正のギャップを、低レベルなロボット動作に効果的に埋めることができる。
論文 参考訳(メタデータ) (2023-06-14T17:27:10Z) - Instruct2Act: Mapping Multi-modality Instructions to Robotic Actions
with Large Language Model [63.66204449776262]
Instruct2Actは、ロボット操作タスクのシーケンシャルアクションにマルチモーダル命令をマッピングするフレームワークである。
我々のアプローチは、様々な命令のモダリティや入力タイプを調節する上で、調整可能で柔軟なものである。
我々のゼロショット法は、いくつかのタスクにおいて、最先端の学習ベースのポリシーよりも優れていた。
論文 参考訳(メタデータ) (2023-05-18T17:59:49Z) - SEAL: Semantic Frame Execution And Localization for Perceiving Afforded
Robot Actions [5.522839151632667]
本稿では,ロボット操作行動のセマンティックフレーム表現を拡張し,セマンティックフレーム実行と局所化の問題をグラフィカルモデルとして導入する。
SEAL問題に対して、ロボットに与えられた行動の場所として、有限のセマンティックフレームに対する信念を維持するための非パラメトリックセマンティックフレームマッピング(SeFM)アルゴリズムについて述べる。
論文 参考訳(メタデータ) (2023-03-24T15:25:41Z) - ProgPrompt: Generating Situated Robot Task Plans using Large Language
Models [68.57918965060787]
大規模言語モデル(LLM)は、タスク計画中の潜在的な次のアクションを評価するために使用することができる。
本稿では, プログラム型LCMプロンプト構造を用いて, 配置環境間での計画生成機能を実現する。
論文 参考訳(メタデータ) (2022-09-22T20:29:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。