論文の概要: Body Transformer: Leveraging Robot Embodiment for Policy Learning
- arxiv url: http://arxiv.org/abs/2408.06316v1
- Date: Mon, 12 Aug 2024 17:31:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-13 12:53:36.189872
- Title: Body Transformer: Leveraging Robot Embodiment for Policy Learning
- Title(参考訳): ボディー・トランスフォーマー:政策学習のためのロボット・エボディメントの活用
- Authors: Carmelo Sferrazza, Dun-Ming Huang, Fangchen Liu, Jongmin Lee, Pieter Abbeel,
- Abstract要約: ボディートランスフォーマー(ボディートランスフォーマー、Body Transformer、BoT)は、学習プロセスを導く誘導バイアスを提供することで、ロボットの体現性を活用するアーキテクチャである。
我々はロボットの体をセンサーとアクチュエータのグラフとして表現し、建築全体を通してプール情報にマスキングされた注意を頼りにしている。
結果として得られるアーキテクチャは、バニラ変換器と古典的な多層パーセプトロンを、タスク完了、スケーリング特性、計算効率の点で上回る。
- 参考スコア(独自算出の注目度): 51.531793239586165
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, the transformer architecture has become the de facto standard for machine learning algorithms applied to natural language processing and computer vision. Despite notable evidence of successful deployment of this architecture in the context of robot learning, we claim that vanilla transformers do not fully exploit the structure of the robot learning problem. Therefore, we propose Body Transformer (BoT), an architecture that leverages the robot embodiment by providing an inductive bias that guides the learning process. We represent the robot body as a graph of sensors and actuators, and rely on masked attention to pool information throughout the architecture. The resulting architecture outperforms the vanilla transformer, as well as the classical multilayer perceptron, in terms of task completion, scaling properties, and computational efficiency when representing either imitation or reinforcement learning policies. Additional material including the open-source code is available at https://sferrazza.cc/bot_site.
- Abstract(参考訳): 近年、トランスフォーマーアーキテクチャは自然言語処理やコンピュータビジョンに応用された機械学習アルゴリズムのデファクトスタンダードとなっている。
ロボット学習の文脈におけるこのアーキテクチャの展開が成功したという顕著な証拠にもかかわらず、我々は、バニラトランスフォーマーはロボット学習問題の構造を完全に活用していないと主張している。
そこで本研究では,学習過程をガイドする帰納バイアスを提供することで,ロボットの体現化を活用するアーキテクチャであるBody Transformer(BoT)を提案する。
我々はロボットの体をセンサーとアクチュエータのグラフとして表現し、建築全体を通してプール情報にマスキングされた注意を頼りにしている。
その結果、バニラ変換器と古典的な多層パーセプトロンは、模倣または強化学習ポリシーを表現する際に、タスク完了、スケーリング特性、計算効率の点で優れている。
オープンソースコードを含む追加資料はhttps://sferrazza.cc/bot_site.comで公開されている。
関連論文リスト
- $π_0$: A Vision-Language-Action Flow Model for General Robot Control [77.32743739202543]
本稿では,インターネット規模のセマンティック知識を継承するために,事前学習された視覚言語モデル(VLM)上に構築された新しいフローマッチングアーキテクチャを提案する。
我々は,事前訓練後のタスクをゼロショットで実行し,人からの言語指導に追従し,微調整で新たなスキルを習得する能力の観点から,我々のモデルを評価した。
論文 参考訳(メタデータ) (2024-10-31T17:22:30Z) - The Ingredients for Robotic Diffusion Transformers [47.61690903645525]
我々は,高容量拡散変圧器政策の鍵となる設計決定を同定し,研究し,改善する。
結果として得られるモデルは、複数のロボットエンボディメント上の多様なタスクを効率的に解決することができる。
当社のポリシーは,高度にマルチモーダルな言語アノテートされたALOHA実証データを用いた10時間トレーニングによるスケーリング性能の向上を示す。
論文 参考訳(メタデータ) (2024-10-14T02:02:54Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
本稿では,コード生成を利用したデプロイ可能なロボット操作パイプラインのためのプラットフォームである textbfRobotScript を提案する。
自由形自然言語におけるロボット操作タスクのためのコード生成ベンチマークも提案する。
我々は,Franka と UR5 のロボットアームを含む,複数のロボットエボディメントにまたがるコード生成フレームワークの適応性を実証した。
論文 参考訳(メタデータ) (2024-02-22T15:12:00Z) - RoboCat: A Self-Improving Generalist Agent for Robotic Manipulation [33.10577695383743]
ロボット操作のためのマルチタスク汎用エージェントRoboCatを提案する。
このデータは、シミュレートされた本物のロボットアームから、さまざまな観察とアクションのセットでモーターコントロールスキルの大規模なレパートリーにまたがる。
RoboCatでは、ゼロショットだけでなく、100-1000例のみを用いて適応することで、新しいタスクやロボットに一般化する能力を実証する。
論文 参考訳(メタデータ) (2023-06-20T17:35:20Z) - RT-1: Robotics Transformer for Real-World Control at Scale [98.09428483862165]
我々は,有望なスケーラブルなモデル特性を示す,ロボティクストランスフォーマーと呼ばれるモデルクラスを提示する。
実世界の課題を遂行する実ロボットの大規模データ収集に基づいて,様々なモデルクラスと,データサイズ,モデルサイズ,データの多様性の関数として一般化する能力について検証した。
論文 参考訳(メタデータ) (2022-12-13T18:55:15Z) - Instruction-driven history-aware policies for robotic manipulations [82.25511767738224]
複数の入力を考慮に入れた統一型トランスフォーマー方式を提案する。
特に,我々のトランスフォーマーアーキテクチャは,(i)自然言語命令と(ii)多視点シーン観測を統合している。
RLBenchベンチマークと実世界のロボットを用いて,本手法の評価を行った。
論文 参考訳(メタデータ) (2022-09-11T16:28:25Z) - What Matters in Language Conditioned Robotic Imitation Learning [26.92329260907805]
オフラインのフリーフォーム模倣データセットから言語条件付きポリシーを学習する際の最も重要な課題について検討する。
本稿では,CALVINベンチマークを用いて,言語条件の難易度を向上する手法を提案する。
論文 参考訳(メタデータ) (2022-04-13T08:45:32Z) - MetaMorph: Learning Universal Controllers with Transformers [45.478223199658785]
ロボット工学では、主に1つのタスクのために1つのロボットを訓練します。
モジュラーロボットシステムは、汎用的なビルディングブロックをタスク最適化形態に柔軟な組み合わせを可能にする。
モジュール型ロボット設計空間上でユニバーサルコントローラを学習するためのトランスフォーマーベースのアプローチであるMetaMorphを提案する。
論文 参考訳(メタデータ) (2022-03-22T17:58:31Z) - Transformer-based deep imitation learning for dual-arm robot
manipulation [5.3022775496405865]
デュアルアームの操作設定では、追加のロボットマニピュレータによって引き起こされる状態次元の増加が注意をそらす。
本稿では、逐次入力における要素間の依存関係を計算し、重要な要素に焦点をあてる自己認識機構を用いてこの問題に対処する。
自己注意型アーキテクチャの変種であるTransformerは、実世界のデュアルアーム操作タスクを解決するために、深層模倣学習に適用される。
論文 参考訳(メタデータ) (2021-08-01T07:42:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。