論文の概要: Knowledge-to-SQL: Enhancing SQL Generation with Data Expert LLM
- arxiv url: http://arxiv.org/abs/2402.11517v2
- Date: Thu, 7 Mar 2024 13:43:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-08 16:57:09.426043
- Title: Knowledge-to-SQL: Enhancing SQL Generation with Data Expert LLM
- Title(参考訳): Knowledge-to-SQL: データエキスパートLLMによるSQL生成の強化
- Authors: Zijin Hong, Zheng Yuan, Hao Chen, Qinggang Zhang, Feiran Huang, Xiao
Huang
- Abstract要約: 既存のモデルは、データベーススキーマに従ってthesqlを生成するために、Large Language Modelsの能力に依存している。
我々は,あらゆるタイプのテキスト・トゥ・エキスパート・モデルに対して,適切な知識を利用する知識・ツー・エキスパート・フレームワークを提案する。
- 参考スコア(独自算出の注目度): 16.836007408933693
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generating accurate SQL for user queries (text-to-SQL) is a long-standing
problem since the generation of the SQL requires comprehending the query and
database and retrieving the accurate data from the database accordingly.
Existing models rely on the comprehensive ability of Large Language Models
(LLMs) to generate the SQL according to the database schema. However, there is
some necessary knowledge that is not explicitly included in the database schema
or has been learned by LLMs. Thus, the generated SQL of the
knowledge-insufficient queries may be inaccurate, which negatively impacts the
robustness of the text-to-SQL models. To deal with this situation, we propose
the Knowledge-to-SQL framework, which employs tailored Data Expert LLM (DELLM)
to provide helpful knowledge for all types of text-to-SQL models. Specifically,
we provide the detailed design of DELLM, in terms of table reading, and the
basic fine-tuning process. We further provide a Preference Learning via
Database Feedback (PLDBF) training strategy to guide the DELLM to generate more
helpful knowledge for LLMs. Extensive experiments verify DELLM can enhance the
state-of-the-art LLMs on text-to-SQL tasks. The model structure and the
parameter weight of DELLM are released for further research.
- Abstract(参考訳): ユーザクエリ(text-to-SQL)に対する正確なSQLの生成は、SQLの生成がクエリとデータベースを補完し、データベースから正確なデータを取得する必要があるため、長年にわたる問題である。
既存のモデルはデータベーススキーマに従ってSQLを生成するためのLLM(Large Language Models)の包括的な能力に依存している。
しかし、データベーススキーマに明示的に含まれていない、あるいはllmsによって学習された必要な知識がある。
したがって、生成した知識不足クエリのsqlは不正確であり、テキスト対sqlモデルのロバスト性に悪影響を及ぼす可能性がある。
この状況に対処するため,データエキスパートのLLM(DELLM)を用いて,すべてのタイプのテキスト・トゥ・SQLモデルに有用な知識を提供するKnowledge-to-SQLフレームワークを提案する。
具体的には,DELLMの詳細設計とテーブル読解,および基礎的な微調整プロセスについて述べる。
さらに、PLDBF(Preference Learning via Database Feedback)トレーニング戦略を提供し、DELLMを誘導し、LLMのより有用な知識を生成する。
大規模な実験により、DELLMはテキストからSQLタスクにおける最先端のLLMを強化することができる。
DELLMのモデル構造とパラメータ重量は、さらなる研究のために公表される。
関連論文リスト
- Enhancing Text-to-SQL Capabilities of Large Language Models via Domain Database Knowledge Injection [23.423794784621368]
大きな言語モデル(LLM)は、スキーマの問題とドメイン固有のデータベース知識の欠如によって、問題に直面します。
本稿では,従来の知識を取り入れたLLMの理解能力を高めるための知識注入手法を提案する。
論文 参考訳(メタデータ) (2024-09-24T09:24:03Z) - PTD-SQL: Partitioning and Targeted Drilling with LLMs in Text-to-SQL [54.304872649870575]
大規模言語モデル(LLM)は、テキスト・トゥ・センス・タスクの強力なツールとして登場した。
本研究では,クエリグループパーティショニングを用いることで,単一問題に特有の思考プロセスの学習に集中できることを示す。
論文 参考訳(メタデータ) (2024-09-21T09:33:14Z) - A Survey on Employing Large Language Models for Text-to-SQL Tasks [9.527891544418805]
リレーショナルデータベースにおけるデータ量の増加は、ユーザがデータにアクセスして分析する上での課題を引き起こします。
Text-to-sql (Text2) は自然言語処理(NLP)技術を用いて自然言語のintsqlクエリを変換することで問題を解決する。
LLM(Large Language Models)の開発により、LLMベースのText2メソッドが出現した。
論文 参考訳(メタデータ) (2024-07-21T14:48:23Z) - Relational Database Augmented Large Language Model [59.38841050766026]
大規模言語モデル(LLM)は多くの自然言語処理(NLP)タスクに優れる。
彼らは、トレーニングや教師付き微調整プロセスを通じてのみ、新しい知識を取り入れることができる。
この正確で最新のプライベート情報は、通常リレーショナルデータベースに格納される。
論文 参考訳(メタデータ) (2024-07-21T06:19:10Z) - RB-SQL: A Retrieval-based LLM Framework for Text-to-SQL [48.516004807486745]
文脈内学習を伴う大規模言語モデル(LLM)は、テキスト・ツー・タスクの性能を大幅に改善した。
In-context prompt Engineering のための新しい検索ベースフレームワーク RB- を提案する。
実験により,我々のモデルは,公開データセットのBIRDとSpiderの競合ベースラインよりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2024-07-11T08:19:58Z) - Next-Generation Database Interfaces: A Survey of LLM-based Text-to-SQL [15.75829309721909]
自然言語の質問(text-to-)から正確なsqlを生成することは、長年にわたる課題である。
PLMはテキスト・ツー・タスクに利用され、有望な性能を実現している。
近年,大規模言語モデル (LLM) は自然言語理解において重要な機能を示している。
論文 参考訳(メタデータ) (2024-06-12T17:13:17Z) - PET-SQL: A Prompt-Enhanced Two-Round Refinement of Text-to-SQL with Cross-consistency [19.067737007347613]
スパイダーベンチマークで新しいSOTA結果が得られ、実行精度は87.6%である。
提案手法は, 87.6%の精度で, スパイダーベンチマークで新しいSOTA結果が得られる。
論文 参考訳(メタデータ) (2024-03-13T02:32:41Z) - An In-Context Schema Understanding Method for Knowledge Base Question
Answering [70.87993081445127]
大きな言語モデル(LLM)は、言語理解において強力な能力を示しており、この課題を解決するために使用することができる。
既存のメソッドは、当初、スキーマ固有の詳細を使わずにLLMを使用してロジックフォームのドラフトを生成することで、この課題を回避している。
そこで本研究では,LLMが文脈内学習を利用してスキーマを直接理解できる簡易なインコンテキスト理解(ICSU)手法を提案する。
論文 参考訳(メタデータ) (2023-10-22T04:19:17Z) - Text-to-SQL Empowered by Large Language Models: A Benchmark Evaluation [76.76046657162306]
大規模言語モデル(LLM)はテキスト・ツー・タスクの新しいパラダイムとして登場した。
大規模言語モデル(LLM)はテキスト・ツー・タスクの新しいパラダイムとして登場した。
論文 参考訳(メタデータ) (2023-08-29T14:59:54Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
本稿では,大規模言語モデル(LLM)を用いたテキスト・ツー・フィルタリングのフレームワークを提案する。
数発のプロンプトで、実行ベースのエラー解析による一貫性復号化の有効性について検討する。
命令の微調整により、チューニングされたLLMの性能に影響を及ぼす重要なパラダイムの理解を深める。
論文 参考訳(メタデータ) (2023-05-26T21:39:05Z) - Querying Large Language Models with SQL [16.383179496709737]
多くのユースケースでは、情報はテキストに格納されるが、構造化データでは利用できない。
事前訓練されたLarge Language Models (LLMs) の台頭に伴い、大量のテキストコーパスから抽出された情報を保存および使用するための効果的なソリューションが現在存在する。
本稿では,従来のデータベースアーキテクチャに基づくプロトタイプであるGaloisについて紹介する。
論文 参考訳(メタデータ) (2023-04-02T06:58:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。