論文の概要: Interactive Garment Recommendation with User in the Loop
- arxiv url: http://arxiv.org/abs/2402.11627v1
- Date: Sun, 18 Feb 2024 16:01:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-20 19:53:53.744037
- Title: Interactive Garment Recommendation with User in the Loop
- Title(参考訳): ループ内のユーザによるインタラクティブな服装推薦
- Authors: Federico Becattini, Xiaolin Chen, Andrea Puccia, Haokun Wen, Xuemeng
Song, Liqiang Nie, Alberto Del Bimbo
- Abstract要約: 我々は,服を作るために補完的なアイテムを推奨するので,ユーザ反応を統合することでユーザプロファイルをその場で構築することを提案する。
本稿では,適切な衣服を提案し,ユーザのフィードバックを取り入れて推薦を改善することができる強化学習エージェントを提案する。
- 参考スコア(独自算出の注目度): 77.35411131350833
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recommending fashion items often leverages rich user profiles and makes
targeted suggestions based on past history and previous purchases. In this
paper, we work under the assumption that no prior knowledge is given about a
user. We propose to build a user profile on the fly by integrating user
reactions as we recommend complementary items to compose an outfit. We present
a reinforcement learning agent capable of suggesting appropriate garments and
ingesting user feedback so to improve its recommendations and maximize user
satisfaction. To train such a model, we resort to a proxy model to be able to
simulate having user feedback in the training loop. We experiment on the
IQON3000 fashion dataset and we find that a reinforcement learning-based agent
becomes capable of improving its recommendations by taking into account
personal preferences. Furthermore, such task demonstrated to be hard for
non-reinforcement models, that cannot exploit exploration during training.
- Abstract(参考訳): ファッションアイテムのリコメンデーションは、しばしばリッチなユーザープロファイルを活用し、過去の履歴と過去の購入に基づいてターゲットとなる提案を行う。
本稿では,ユーザの事前知識が与えられていないことを前提として作業を行う。
我々は,着物を構成するための補完アイテムを推奨するため,ユーザの反応を統合することで,ユーザプロファイルをオンザフライで構築することを提案する。
本稿では,適切な衣服を提案し,ユーザのフィードバックを取り込み,その推奨を改善し,ユーザ満足度を最大化する強化学習エージェントを提案する。
このようなモデルをトレーニングするために、私たちは、トレーニングループ内のユーザフィードバックをシミュレートできるプロキシモデルを活用します。
我々はIQON3000のファッションデータセットを実験し、強化学習に基づくエージェントが個人の好みを考慮し、推薦を改善することができることを示した。
さらに、そのような作業は、訓練中の探索を活用できない非強化モデルにとって困難であることが証明された。
関連論文リスト
- Personalized Language Modeling from Personalized Human Feedback [49.344833339240566]
人間のフィードバックからの強化学習(Reinforcement Learning from Human Feedback, RLHF)は、人間の好みに合わせて大きな言語モデルを微調整するために一般的に用いられる。
本研究では,パーソナライズされた言語モデルを構築する手法を開発することにより,この問題に対処することを目的とする。
論文 参考訳(メタデータ) (2024-02-06T04:18:58Z) - Learning from Negative User Feedback and Measuring Responsiveness for
Sequential Recommenders [13.762960304406016]
シーケンシャルレコメンデータのトレーニング目標に、明示的かつ暗黙的なネガティブなユーザフィードバックを導入する。
大規模産業レコメンデーションシステムを用いた実演実験により,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-08-23T17:16:07Z) - Editable User Profiles for Controllable Text Recommendation [66.00743968792275]
制御可能なテキストレコメンデーションのための新しい概念値ボトルネックモデル LACE を提案する。
LACEは、人間の読みやすい概念の簡潔なセットで各ユーザーを表現する。
ユーザ文書に基づいて概念のパーソナライズされた表現を学習する。
論文 参考訳(メタデータ) (2023-04-09T14:52:18Z) - Latent User Intent Modeling for Sequential Recommenders [92.66888409973495]
逐次リコメンデータモデルは、プラットフォーム上での氏のインタラクション履歴に基づいて、ユーザが次に対話する可能性のあるアイテムを予測することを学習する。
しかし、ほとんどのシーケンシャルなレコメンデータは、ユーザの意図に対する高いレベルの理解を欠いている。
したがって、インテントモデリングはユーザー理解と長期ユーザーエクスペリエンスの最適化に不可欠である。
論文 参考訳(メタデータ) (2022-11-17T19:00:24Z) - Recommendation with User Active Disclosing Willingness [20.306413327597603]
本研究では,ユーザが異なる行動を公開する上で,その「意志」を示すことを許される,新しい推薦パラダイムについて検討する。
我々は,推薦品質とユーザ開示意欲のバランスをとる上で,モデルの有効性を示すため,広範囲な実験を行った。
論文 参考訳(メタデータ) (2022-10-25T04:43:40Z) - Reward Shaping for User Satisfaction in a REINFORCE Recommender [24.65853598093849]
本稿では,ユーザの満足度を満足するアクションを学習するためのポリシーネットワークと満足度計算ネットワークを提案する。
命令ネットワークの役割は、どのアクションがユーザに満足しているかを学習することであり、ポリシーネットワークは、REINFORCE上に構築され、どの項目を推奨するかを決定する。
論文 参考訳(メタデータ) (2022-09-30T01:29:12Z) - ELIXIR: Learning from User Feedback on Explanations to Improve
Recommender Models [26.11434743591804]
説明に対するユーザフィードバックをユーザ好みのペアワイズ学習に活用する,ループ内人間フレームワーク ELIXIR を考案した。
elixirは、レコメンデーションと説明のペアに対するフィードバックを活用して、ユーザ固有の潜在選好ベクトルを学習する。
このフレームワークは、ランダムウォークとリスタートによる一般化グラフレコメンデーションを用いてインスタンス化される。
論文 参考訳(メタデータ) (2021-02-15T13:43:49Z) - Offline Meta-level Model-based Reinforcement Learning Approach for
Cold-Start Recommendation [27.17948754183511]
強化学習は、リコメンデータシステムに対する長期的なユーザの関心を最適化する上で大きな可能性を秘めている。
既存のRLベースのレコメンデーション手法では、ユーザが堅牢なレコメンデーションポリシーを学ぶために、多数のインタラクションが必要である。
本稿では,ユーザ適応の高速化を目的としたメタレベルモデルに基づく強化学習手法を提案する。
論文 参考訳(メタデータ) (2020-12-04T08:58:35Z) - Generative Inverse Deep Reinforcement Learning for Online Recommendation [62.09946317831129]
オンラインレコメンデーションのための新しい逆強化学習手法InvRecを提案する。
InvRecは、オンラインレコメンデーションのために、ユーザの行動から報酬関数を自動的に抽出する。
論文 参考訳(メタデータ) (2020-11-04T12:12:25Z) - Empowering Active Learning to Jointly Optimize System and User Demands [70.66168547821019]
我々は,アクティブラーニングシステムとユーザを協調的に(効率的に学習)するための,新しいアクティブラーニング手法を提案する。
本手法は,特定のユーザに対して,エクササイズの適切性を予測するために,学習を迅速かつ迅速に行う必要があるため,特に,この手法のメリットを生かした教育アプリケーションで研究する。
複数の学習戦略とユーザタイプを実際のユーザからのデータで評価し,代替手法がエンドユーザに適さない多くのエクササイズをもたらす場合,共同アプローチが両方の目標を満足できることを確認した。
論文 参考訳(メタデータ) (2020-05-09T16:02:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。