論文の概要: In-Context Learning Demonstration Selection via Influence Analysis
- arxiv url: http://arxiv.org/abs/2402.11750v1
- Date: Mon, 19 Feb 2024 00:39:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-20 19:08:35.165666
- Title: In-Context Learning Demonstration Selection via Influence Analysis
- Title(参考訳): 影響分析によるインテクスト学習の実証選択
- Authors: Vinay M.S., Minh-Hao Van, Xintao Wu
- Abstract要約: 大規模言語モデル(LLM)は、そのICL(In-Context Learning)機能を実証した。
複数の利点があるにもかかわらず、ICLの一般化性能は選択されたデモに敏感である。
本研究では,インフルエンス関数によるトレーニングサンプルの影響を解析するInfICLという実演選択手法を提案する。
- 参考スコア(独自算出の注目度): 12.929357709840975
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated their In-Context Learning
(ICL) capabilities which provides an opportunity to perform few shot learning
without any gradient update. Despite its multiple benefits, ICL generalization
performance is sensitive to the selected demonstrations. Selecting effective
demonstrations for ICL is still an open research challenge. To address this
challenge, we propose a demonstration selection method called InfICL which
analyzes influences of training samples through influence functions.
Identifying highly influential training samples can potentially aid in
uplifting the ICL generalization performance. To limit the running cost of
InfICL, we only employ the LLM to generate sample embeddings, and don't perform
any costly fine tuning. We perform empirical study on multiple real-world
datasets and show merits of our InfICL against state-of-the-art baselines.
- Abstract(参考訳): 大規模言語モデル(llm)は、グラデーション更新なしで、わずかなショット学習を実行する機会を提供する、コンテキスト内学習(icl)機能を実証した。
複数の利点があるにもかかわらず、iclの一般化性能は選択されたデモに敏感である。
iclの効果的なデモの選択は、まだオープンリサーチの課題である。
この課題に対処するために,インフルエンス機能を通じてトレーニングサンプルの影響を分析するinficlというデモンストレーション選択手法を提案する。
高い影響力を持つトレーニングサンプルの特定は、iclの一般化性能向上に役立つ可能性がある。
inficlの実行コストを制限するため、サンプル埋め込みを生成するのにllmのみを使用し、コストのかかる微調整は行いません。
複数の実世界のデータセットに関する実証的研究を行い、最先端のベースラインに対するInfICLのメリットを示します。
関連論文リスト
- DemoShapley: Valuation of Demonstrations for In-Context Learning [20.26604061802236]
インコンテキスト学習(ICL)を利用した大規模言語モデル(LLM)は、タスク固有の微調整を必要とせずに、様々なタスク間で数ショットの学習を行う新しいベンチマークを設定した。
我々は、Data Shapleyの評価定理にインスパイアされたDemoShapleyを紹介する。
この結果から,DemoShapleyは精度と公平性の観点からモデル性能を向上するだけでなく,コンテキスト内デモとは異なる領域からのクエリを一般化することがわかった。
論文 参考訳(メタデータ) (2024-10-10T01:35:03Z) - Focused Large Language Models are Stable Many-Shot Learners [18.783939647966776]
In-Context Learning (ICL)により、大規模な言語モデル(LLM)がデモから学習することで、迅速なタスク適応を実現することができる。
重要でないコンテンツから注意を逸らすことを避けるために,自明なフィルタリングを行う訓練不要なFocusICLを提案する。
その結果,FocusICLはバニラICLよりも平均5.2%の性能向上を実現し,多くの実演に匹敵する性能を示した。
論文 参考訳(メタデータ) (2024-08-26T02:53:24Z) - Strategic Demonstration Selection for Improved Fairness in LLM In-Context Learning [18.782566259311206]
本研究は,大規模言語モデル (LLM) の公平性にどう影響するかを検討する。
少数派のサンプルを意図的に含むと、予測精度を犠牲にすることなく、公平性が著しく向上することがわかった。
学習データから多種多様な代表的なサンプルをキュレートするために,クラスタリングと進化戦略を用いた緩和手法を導入する。
論文 参考訳(メタデータ) (2024-08-19T07:34:43Z) - Large Language Models Know What Makes Exemplary Contexts [42.90814615222177]
In-context Learning (ICL) は、Large Language Model (LLM) の発展において重要な機能であることが証明されている。
本稿では,LLMのための統合フレームワークを提案する。このフレームワークにより,影響力のあるインコンテキストのサンプルを自己選択してコンテキストを構成することができる。
論文 参考訳(メタデータ) (2024-08-14T12:32:41Z) - DETAIL: Task DEmonsTration Attribution for Interpretable In-context Learning [75.68193159293425]
インコンテキスト学習(ICL)により、トランスフォーマーベースの言語モデルでは、パラメータを更新することなく、いくつかの"タスクデモ"で特定のタスクを学習することができる。
ICLの特徴に対処する影響関数に基づく帰属手法DETAILを提案する。
ホワイトボックスモデルで得られた属性スコアがブラックボックスモデルに転送可能であることを示すことにより、モデル性能を向上させる上で、DETAILの広範な適用性を実験的に証明する。
論文 参考訳(メタデータ) (2024-05-22T15:52:52Z) - ParaICL: Towards Robust Parallel In-Context Learning [74.38022919598443]
大規模言語モデル(LLM)が自然言語処理の標準となっている。
インコンテキスト・ラーニング(ICL)は、いくつかの実演例の選択に依存している。
パラレルインコンテキスト学習(ParaICL)という新しい手法を提案する。
論文 参考訳(メタデータ) (2024-03-31T05:56:15Z) - C-ICL: Contrastive In-context Learning for Information Extraction [54.39470114243744]
c-ICLは、正しいサンプル構築と間違ったサンプル構築の両方を活用して、コンテキスト内学習のデモを作成する、新しい数ショット技術である。
各種データセットに対する実験により,c-ICLは従来の数発のインコンテキスト学習法よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-02-17T11:28:08Z) - Revisiting Demonstration Selection Strategies in In-Context Learning [66.11652803887284]
大規模言語モデル(LLM)は、インコンテキスト学習(ICL)を用いて広範囲のタスクを実行するという印象的な能力を示している。
本研究ではまず,データとモデルの両方の側面から,この分散に寄与する要因を再検討し,実演の選択がデータとモデルに依存していることを確かめる。
本研究では,データとモデルに依存した実演選択手法である textbfTopK + ConE を提案する。
論文 参考訳(メタデータ) (2024-01-22T16:25:27Z) - Understanding and Improving In-Context Learning on Vision-language
Models [42.7212469140844]
In-context Learning (ICL) on large language model (LLMs) に大きな注目を集めており、この手法は視覚言語モデル (VLMs) に適用できる。
本研究では,視覚情報と言語情報の両方の重要性について検討する。
我々は、Mixed Modality In-Context Example Selection (MMICES)と呼ばれるシンプルだが効果的なアプローチを提案する。
論文 参考訳(メタデータ) (2023-11-29T19:08:11Z) - Dynamic Demonstrations Controller for In-Context Learning [51.3439660534631]
In-Context Learning(ICL)は、自然言語処理(NLP)のための新しいパラダイムであり、大規模な言語モデルが少数の実演とテストインスタンスを入力として観察する。
これまでの研究では、ICLはデモの選択と順序に敏感であることが判明している。
デモ数を調整することでICLの性能を向上させる動的デモ制御器(D$2$Controller)を提案する。
論文 参考訳(メタデータ) (2023-09-30T14:04:22Z) - Iterative Forward Tuning Boosts In-Context Learning in Language Models [88.25013390669845]
本研究では,大規模言語モデル(LLM)における文脈内学習を促進する新しい2段階フレームワークを提案する。
具体的には、当社のフレームワークでは、ICLプロセスをDeep-ThinkingとTest Stageの2つの別々のステージに分類しています。
ディープシンキング段階にはユニークな注意機構、すなわち反復的な注意強化機構が組み込まれており、複数の情報の蓄積を可能にしている。
論文 参考訳(メタデータ) (2023-05-22T13:18:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。