論文の概要: Self-Guided Robust Graph Structure Refinement
- arxiv url: http://arxiv.org/abs/2402.11837v1
- Date: Mon, 19 Feb 2024 05:00:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-20 18:14:29.616401
- Title: Self-Guided Robust Graph Structure Refinement
- Title(参考訳): 自己ガイドロバストグラフ構造再構成
- Authors: Yeonjun In, Kanghoon Yoon, Kibum Kim, Kijung Shin, and Chanyoung Park
- Abstract要約: 本稿では,GNNを敵攻撃から守るための自己誘導グラフ構造改善(GSR)フレームワークを提案する。
本稿では,非標的攻撃,標的攻撃,機能攻撃,eコマース詐欺,ノイズの多いノードラベルなど,様々なシナリオにおけるSG-GSRの有効性を実証する。
- 参考スコア(独自算出の注目度): 37.235898707554284
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent studies have revealed that GNNs are vulnerable to adversarial attacks.
To defend against such attacks, robust graph structure refinement (GSR) methods
aim at minimizing the effect of adversarial edges based on node features, graph
structure, or external information. However, we have discovered that existing
GSR methods are limited by narrowassumptions, such as assuming clean node
features, moderate structural attacks, and the availability of external clean
graphs, resulting in the restricted applicability in real-world scenarios. In
this paper, we propose a self-guided GSR framework (SG-GSR), which utilizes a
clean sub-graph found within the given attacked graph itself. Furthermore, we
propose a novel graph augmentation and a group-training strategy to handle the
two technical challenges in the clean sub-graph extraction: 1) loss of
structural information, and 2) imbalanced node degree distribution. Extensive
experiments demonstrate the effectiveness of SG-GSR under various scenarios
including non-targeted attacks, targeted attacks, feature attacks, e-commerce
fraud, and noisy node labels. Our code is available at
https://github.com/yeonjun-in/torch-SG-GSR.
- Abstract(参考訳): 近年の研究では、GNNは敵の攻撃に弱いことが判明している。
このような攻撃に対して、堅牢なグラフ構造改善(GSR)手法は、ノードの特徴、グラフ構造、外部情報に基づく対角線の影響を最小限に抑えることを目的としている。
しかし,既存のGSR手法は,クリーンノードの特徴の仮定,中程度の構造的攻撃,外部クリーングラフの可用性など,狭義の手法によって制限されていることが判明した。
本稿では,攻撃されたグラフ自体のクリーンな部分グラフを利用する自己誘導型GSRフレームワーク(SG-GSR)を提案する。
さらに、クリーンな部分グラフ抽出における2つの技術的課題に対処する新しいグラフ強化とグループ学習戦略を提案する。
1)構造情報の喪失、及び
2)不均衡なノード次数分布。
非標的攻撃、標的攻撃、フィーチャーアタック、Eコマース詐欺、ノイズの多いノードラベルなど、さまざまなシナリオにおけるSG-GSRの有効性を示す。
私たちのコードはhttps://github.com/yeonjun-in/torch-SG-GSRで公開されています。
関連論文リスト
- Relaxing Graph Transformers for Adversarial Attacks [49.450581960551276]
グラフトランスフォーマー(GT)は、いくつかのベンチマークでMessage-Passing GNNを上回り、その逆の堅牢性は明らかにされていない。
本研究では,(1)ランダムウォークPE,(2)ペアワイドショートパス,(3)スペクトル摂動に基づく3つの代表的なアーキテクチャを対象とすることで,これらの課題を克服する。
評価の結果, 破滅的に脆弱であり, 作業の重要性と適応攻撃の必要性を浮き彫りにする可能性が示唆された。
論文 参考訳(メタデータ) (2024-07-16T14:24:58Z) - Sparse but Strong: Crafting Adversarially Robust Graph Lottery Tickets [3.325501850627077]
Graph Lottery Tickets(GLT)は、その密度の高いものと比較して、推論レイテンシと計算フットプリントを大幅に削減する。
これらの利点にも拘わらず、敵構造摂動に対するそれらの性能はいまだに完全に検討されている。
本稿では,隣接行列とGNN重みを具現化する,逆向きに頑健なグラフスペーシフィケーションフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-11T17:52:46Z) - Everything Perturbed All at Once: Enabling Differentiable Graph Attacks [61.61327182050706]
グラフニューラルネットワーク(GNN)は敵の攻撃に弱いことが示されている。
本稿では,DGA(Dariable Graph Attack)と呼ばれる新しい攻撃手法を提案し,効果的な攻撃を効率的に生成する。
最先端と比較して、DGAは6倍のトレーニング時間と11倍のGPUメモリフットプリントでほぼ同等の攻撃性能を達成する。
論文 参考訳(メタデータ) (2023-08-29T20:14:42Z) - EDoG: Adversarial Edge Detection For Graph Neural Networks [17.969573886307906]
グラフニューラルネットワーク(GNN)は、バイオインフォマティクス、薬物設計、ソーシャルネットワークといった様々なタスクに広く応用されている。
近年の研究では、GNNは、微妙な摂動を加えることでノードやサブグラフの分類予測を誤認することを目的とした敵攻撃に弱いことが示されている。
本稿では,グラフ生成に基づく攻撃戦略の知識を必要とせず,汎用対向エッジ検出パイプラインEDoGを提案する。
論文 参考訳(メタデータ) (2022-12-27T20:42:36Z) - Resisting Graph Adversarial Attack via Cooperative Homophilous
Augmentation [60.50994154879244]
最近の研究では、グラフニューラルネットワークは弱く、小さな摂動によって簡単に騙されることが示されている。
本研究では,グラフインジェクションアタック(Graph Injection Attack)という,新興だが重要な攻撃に焦点を当てる。
本稿では,グラフデータとモデルの協調的同好性増強によるGIAに対する汎用防衛フレームワークCHAGNNを提案する。
論文 参考訳(メタデータ) (2022-11-15T11:44:31Z) - Reliable Representations Make A Stronger Defender: Unsupervised
Structure Refinement for Robust GNN [36.045702771828736]
グラフニューラルネットワーク(GNN)は、グラフデータ上でのタスクの繁栄に成功している。
近年の研究では、グラフ構造を悪質に修正することで、攻撃者がGNNの性能を壊滅的に低下させることができることが示されている。
グラフ構造を最適化するための教師なしパイプラインSTABLEを提案する。
論文 参考訳(メタデータ) (2022-06-30T10:02:32Z) - BinarizedAttack: Structural Poisoning Attacks to Graph-based Anomaly
Detection [20.666171188140503]
グラフに基づく異常検出(GAD)は,グラフの強力な表現能力によって普及しつつある。
皮肉なことに、これらのGADツールは、データ間の関係を活用できるというユニークな利点のために、新たな攻撃面を公開する。
本稿では, この脆弱性を利用して, 代表的な回帰型GADシステムOddBallに対して, 標的となる新しいタイプの構造的中毒攻撃を設計する。
論文 参考訳(メタデータ) (2021-06-18T08:20:23Z) - GraphAttacker: A General Multi-Task GraphAttack Framework [4.218118583619758]
グラフニューラルネットワーク(GNN)は多くの実世界のアプリケーションでグラフ解析タスクにうまく活用されている。
攻撃者が生成した敵のサンプルは ほとんど知覚不能な摂動で 優れた攻撃性能を達成しました
本稿では,グラフ解析タスクに応じて構造と攻撃戦略を柔軟に調整可能な,新しい汎用グラフ攻撃フレームワークであるgraphattackerを提案する。
論文 参考訳(メタデータ) (2021-01-18T03:06:41Z) - Adversarial Attack on Large Scale Graph [58.741365277995044]
近年の研究では、グラフニューラルネットワーク(GNN)は堅牢性の欠如により摂動に弱いことが示されている。
現在、GNN攻撃に関するほとんどの研究は、主に攻撃を誘導し、優れたパフォーマンスを達成するために勾配情報を使用している。
主な理由は、攻撃にグラフ全体を使わなければならないため、データスケールが大きくなるにつれて、時間と空間の複雑さが増大するからです。
本稿では,グラフデータに対する敵攻撃の影響を測定するために,DAC(Degree Assortativity Change)という実用的な指標を提案する。
論文 参考訳(メタデータ) (2020-09-08T02:17:55Z) - Graph Backdoor [53.70971502299977]
GTAはグラフニューラルネットワーク(GNN)に対する最初のバックドア攻撃である。
GTAは、トポロジカル構造と記述的特徴の両方を含む特定の部分グラフとしてトリガーを定義する。
トランスダクティブ(ノード分類など)とインダクティブ(グラフ分類など)の両方のタスクに対してインスタンス化することができる。
論文 参考訳(メタデータ) (2020-06-21T19:45:30Z) - Graph Structure Learning for Robust Graph Neural Networks [63.04935468644495]
グラフニューラルネットワーク(GNN)は、グラフの表現学習において強力なツールである。
近年の研究では、GNNは敵攻撃と呼ばれる、慎重に構築された摂動に弱いことが示されている。
本稿では,構造グラフと頑健なグラフニューラルネットワークモデルを共同で学習できる汎用フレームワークであるPro-GNNを提案する。
論文 参考訳(メタデータ) (2020-05-20T17:07:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。