Orbital-rotated Fermi-Hubbard model as a benchmarking problem for
quantum chemistry with the exact solution
- URL: http://arxiv.org/abs/2402.11869v1
- Date: Mon, 19 Feb 2024 06:24:54 GMT
- Title: Orbital-rotated Fermi-Hubbard model as a benchmarking problem for
quantum chemistry with the exact solution
- Authors: Ryota Kojima, Masahiko Kamoshita, Keita Kanno
- Abstract summary: We consider the problem of quantum chemistry, which is considered one of the important applications of quantum algorithms.
The large number of terms in molecular Hamiltonians is a major bottleneck when applying quantum algorithms to quantum chemistry.
We propose a set of exactly solvable Hamiltonians that has a comparable order of terms with molecular Hamiltonians.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Evaluating the relative performance of different quantum algorithms for
quantum computers is of great significance in the research of quantum
algorithms. In this study, we consider the problem of quantum chemistry, which
is considered one of the important applications of quantum algorithms. While
evaluating these algorithms in systems with a large number of qubits is
essential to see the scalability of the algorithms, the solvable models usually
used for such evaluations typically have a small number of terms compared to
the molecular Hamiltonians used in quantum chemistry. The large number of terms
in molecular Hamiltonians is a major bottleneck when applying quantum
algorithms to quantum chemistry. Various methods are being considered to
address this problem, highlighting its importance in developing quantum
algorithms for quantum chemistry. Based on these points, a solvable model with
a number of terms comparable to the molecular Hamiltonian is essential to
evaluate the performance of such algorithms. In this paper, we propose a set of
exactly solvable Hamiltonians that has a comparable order of terms with
molecular Hamiltonians by applying a spin-involving orbital rotation to the
one-dimensional Fermi-Hubbard Hamiltonian. We verify its similarity to the
molecular Hamiltonian from some prospectives and investigate whether the
difficulty of calculating the ground-state energy changes before and after
orbital rotation by applying the density matrix renormalization group up to 24
sites corresponding to 48 qubits. This proposal would enable proper evaluation
of the performance of quantum algorithms for quantum chemistry, serving as a
guiding framework for algorithm development.
Related papers
- Quantum Information Processing with Molecular Nanomagnets: an introduction [49.89725935672549]
We provide an introduction to Quantum Information Processing, focusing on a promising setup for its implementation.
We introduce the basic tools to understand and design quantum algorithms, always referring to their actual realization on a molecular spin architecture.
We present some examples of quantum algorithms proposed and implemented on a molecular spin qudit hardware.
arXiv Detail & Related papers (2024-05-31T16:43:20Z) - Resource analysis of quantum algorithms for coarse-grained protein
folding models [0.0]
We analyze the resource requirements for simulating protein folding on a quantum computer.
We calculate the minimum number of qubits, interactions, and two-qubit gates necessary to build a quantum algorithm.
arXiv Detail & Related papers (2023-11-07T18:27:44Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - Feedback-based quantum algorithms for ground state preparation [0.0]
Ground state properties of quantum many-body systems are a subject of interest across chemistry, materials science, and physics.
Variational quantum algorithms are one class of ground state algorithms that has received significant attention in recent years.
We develop formulations of feedback-based quantum algorithms for ground state preparation.
arXiv Detail & Related papers (2023-03-06T06:27:59Z) - Benchmarking Small-Scale Quantum Devices on Computing Graph Edit
Distance [52.77024349608834]
Graph Edit Distance (GED) measures the degree of (dis)similarity between two graphs in terms of the operations needed to make them identical.
In this paper we present a comparative study of two quantum approaches to computing GED.
arXiv Detail & Related papers (2021-11-19T12:35:26Z) - State preparation and evolution in quantum computing: a perspective from
Hamiltonian moments [5.774827369850958]
Recent efforts highlight the development of quantum algorithms based upon quantum computed Hamiltonian moments.
This tutorial review focuses on the typical ways of computing Hamiltonian moments using quantum hardware and improving the accuracy of the estimated state energies.
arXiv Detail & Related papers (2021-09-27T04:24:19Z) - Sparse-Hamiltonian approach to the time evolution of molecules on
quantum computers [0.0]
We explore the possibility of mapping the molecular problem onto a sparse Hubbard-like Hamiltonian.
This allows a Green's-function-based approach to electronic structure via a hybrid quantum-classical algorithm.
arXiv Detail & Related papers (2020-09-26T20:32:06Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - Hybrid Quantum-Classical Eigensolver Without Variation or Parametric
Gates [0.0]
We present a process for obtaining the eigenenergy spectrum of electronic quantum systems.
This is achieved by projecting the Hamiltonian of a quantum system onto a limited effective Hilbert space.
A process for preparing short depth quantum circuits to measure the corresponding diagonal and off-diagonal terms of the effective Hamiltonian is given.
arXiv Detail & Related papers (2020-08-26T02:31:24Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.