Sparse-Hamiltonian approach to the time evolution of molecules on
quantum computers
- URL: http://arxiv.org/abs/2009.12679v1
- Date: Sat, 26 Sep 2020 20:32:06 GMT
- Title: Sparse-Hamiltonian approach to the time evolution of molecules on
quantum computers
- Authors: Christina Daniel, Diksha Dhawan, Dominika Zgid, James K. Freericks
- Abstract summary: We explore the possibility of mapping the molecular problem onto a sparse Hubbard-like Hamiltonian.
This allows a Green's-function-based approach to electronic structure via a hybrid quantum-classical algorithm.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum chemistry has been viewed as one of the potential early applications
of quantum computing. Two techniques have been proposed for electronic
structure calculations: (i) the variational quantum eigensolver and (ii) the
phase-estimation algorithm. In both cases, the complexity of the problem
increases for basis sets where either the Hamiltonian is not sparse, or it is
sparse, but many orbitals are required to accurately describe the molecule of
interest. In this work, we explore the possibility of mapping the molecular
problem onto a sparse Hubbard-like Hamiltonian, which allows a
Green's-function-based approach to electronic structure via a hybrid
quantum-classical algorithm. We illustrate the time-evolution aspect of this
methodology with a simple four-site hydrogen ring.
Related papers
- Quantum Simulations of Chemistry in First Quantization with any Basis Set [0.0]
Quantum computation of the energy of molecules and materials is one of the most promising applications of fault-tolerant quantum computers.
Previous work has mainly represented the Hamiltonian of the system in second quantization.
We present a method to solve the generic ground-state chemistry problem in first quantization on a fault-tolerant quantum computer using any basis set.
This allows for calculations in the active space using modern quantum chemistry basis sets.
arXiv Detail & Related papers (2024-08-06T12:40:32Z) - Orbital-rotated Fermi-Hubbard model as a benchmarking problem for
quantum chemistry with the exact solution [0.0]
We consider the problem of quantum chemistry, which is considered one of the important applications of quantum algorithms.
The large number of terms in molecular Hamiltonians is a major bottleneck when applying quantum algorithms to quantum chemistry.
We propose a set of exactly solvable Hamiltonians that has a comparable order of terms with molecular Hamiltonians.
arXiv Detail & Related papers (2024-02-19T06:24:54Z) - Quantum Information Driven Ansatz (QIDA): shallow-depth empirical
quantum circuits from Quantum Chemistry [0.0]
We propose a new approach for constructing variational quantum circuits, leveraging quantum mutual information associated with classical Quantum Chemistry states.
The proposed methodology gives rise to highly effective ans"atze, surpassing the standard empirical ladder-entangler ansatz in performance.
arXiv Detail & Related papers (2023-09-26T21:50:02Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
Unitary evolution under a time dependent Hamiltonian is a key component of simulation on quantum hardware.
We present an algorithm that compresses the Trotter steps into a single block of quantum gates.
This results in a fixed depth time evolution for certain classes of Hamiltonians.
arXiv Detail & Related papers (2021-08-06T19:38:01Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
We demonstrate the use of a D-Wave quantum annealer for the calculation of excited electronic states of molecular systems.
These simulations play an important role in a number of areas, such as photovoltaics, semiconductor technology and nanoscience.
arXiv Detail & Related papers (2021-07-01T01:02:17Z) - Calculation of the ground-state Stark effect in small molecules using
the variational quantum eigensolver [0.0]
We study a quantum simulation for the hydrogen (H2) and lithium hydride (LiH) molecules, at an actual commercially available quantum computer, the IBM Q.
Using the Variational Quantum Eigensolver (VQE) method, we study the molecule's ground state energy versus interatomic distance, under the action of stationary electric fields.
arXiv Detail & Related papers (2021-03-22T11:49:42Z) - Engineering analog quantum chemistry Hamiltonians using cold atoms in
optical lattices [69.50862982117127]
We benchmark the working conditions of the numerically analog simulator and find less demanding experimental setups.
We also provide a deeper understanding of the errors of the simulation appearing due to discretization and finite size effects.
arXiv Detail & Related papers (2020-11-28T11:23:06Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
We propose an analog simulator for discrete 2D quantum chemistry models based on cold atoms in optical lattices.
We first analyze how to simulate simple models, like the discrete versions of H and H$+$, using a single fermionic atom.
We then show that a single bosonic atom can mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular Hydrogen in two dimensions.
arXiv Detail & Related papers (2020-02-21T16:00:36Z) - Computation of molecular excited states on IBM quantum computers using a
discriminative variational quantum eigensolver [0.965964228590342]
We propose a variational quantum machine learning based method to determine molecular excited states.
Our method uses a combination of two parametrized quantum circuits, working in tandem, combined with a Variational Quantum Eigensolver (VQE) to iteratively find the eigenstates of a molecular Hamiltonian.
arXiv Detail & Related papers (2020-01-14T17:56:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.