論文の概要: Generative Semi-supervised Graph Anomaly Detection
- arxiv url: http://arxiv.org/abs/2402.11887v6
- Date: Thu, 31 Oct 2024 00:55:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 16:57:09.962165
- Title: Generative Semi-supervised Graph Anomaly Detection
- Title(参考訳): 生成的半教師付きグラフ異常検出
- Authors: Hezhe Qiao, Qingsong Wen, Xiaoli Li, Ee-Peng Lim, Guansong Pang,
- Abstract要約: この研究は、グラフ内のノードの一部が正規であることが知られている、実用的な半教師付きグラフ異常検出(GAD)シナリオについて考察する。
我々は,通常のノードをよりよく活用するために,半教師付きシナリオのための新しいGAD手法(GGAD)を提案する。
GGADは、異常ノード(非対称な局所親和性と自中心的親密性)に関する2つの重要な先行情報を活用するように設計されている。
- 参考スコア(独自算出の注目度): 42.02691404704764
- License:
- Abstract: This work considers a practical semi-supervised graph anomaly detection (GAD) scenario, where part of the nodes in a graph are known to be normal, contrasting to the extensively explored unsupervised setting with a fully unlabeled graph. We reveal that having access to the normal nodes, even just a small percentage of normal nodes, helps enhance the detection performance of existing unsupervised GAD methods when they are adapted to the semi-supervised setting. However, their utilization of these normal nodes is limited. In this paper, we propose a novel Generative GAD approach (namely GGAD) for the semi-supervised scenario to better exploit the normal nodes. The key idea is to generate pseudo anomaly nodes, referred to as 'outlier nodes', for providing effective negative node samples in training a discriminative one-class classifier. The main challenge here lies in the lack of ground truth information about real anomaly nodes. To address this challenge, GGAD is designed to leverage two important priors about the anomaly nodes -- asymmetric local affinity and egocentric closeness -- to generate reliable outlier nodes that assimilate anomaly nodes in both graph structure and feature representations. Comprehensive experiments on six real-world GAD datasets are performed to establish a benchmark for semi-supervised GAD and show that GGAD substantially outperforms state-of-the-art unsupervised and semi-supervised GAD methods with varying numbers of training normal nodes. Code will be made available at https://github.com/mala-lab/GGAD.
- Abstract(参考訳): この研究は、グラフ内のノードの一部が正規であることが知られている実用的な半教師付きグラフ異常検出(GAD)シナリオを考察し、完全にラベル付けされていないグラフを用いた広範囲に探索された教師なし設定とは対照的である。
我々は,通常のノードへのアクセスがごく少数のノードであっても,半教師付き設定に適応した場合に,既存の教師なしGAD手法の検出性能を向上させることを明らかにした。
しかし、これらの通常のノードの利用は限られている。
本稿では,通常のノードをよりよく活用するために,半教師付きシナリオのための新しいGAD手法(GGAD)を提案する。
鍵となるアイデアは、識別可能な1クラス分類器を訓練する際に有効な負のノードサンプルを提供するために、擬似異常ノード("outlier node"と呼ばれる)を生成することである。
ここでの最大の課題は、実際の異常ノードに関する基礎的な真理情報の欠如である。
この課題に対処するため、GGADは、異常ノード(非対称な局所親和性と自中心的親和性)に関する2つの重要な事前情報を活用するように設計されており、グラフ構造と特徴表現の両方で異常ノードを同化する信頼性の高い外れ値ノードを生成する。
6つの実世界のGADデータセットに関する総合的な実験を行い、半教師付きGADのベンチマークを確立し、GAGDが訓練正常ノード数の異なる最先端の非教師付きおよび半教師付きGADメソッドを大幅に上回っていることを示す。
コードはhttps://github.com/mala-lab/GGAD.comで公開される。
関連論文リスト
- Zero-shot Generalist Graph Anomaly Detection with Unified Neighborhood Prompts [21.05107001235223]
グラフ異常検出(GAD)は、通常のパターンから著しく逸脱したグラフ内のノードを特定することを目的としている。
既存のGADメソッドは、教師付きでも教師なしでも、ワン・モデル・フォー・ワン・データセットのアプローチである。
ゼロショット・ジェネラリストのGADがUNPromptに近づき、一対一検出モデルを訓練する。
論文 参考訳(メタデータ) (2024-10-18T22:23:59Z) - Re-visiting Skip-Gram Negative Sampling: Dimension Regularization for More Efficient Dissimilarity Preservation in Graph Embeddings [8.858596502294471]
ノードワイドの反発は、集合的に、ノード埋め込み次元の近似的な再中心化であることを示す。
本稿では,教師付きあるいは教師なしのアルゴリズムを高速化するアルゴリズム拡張フレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-30T19:43:01Z) - Alleviating Structural Distribution Shift in Graph Anomaly Detection [70.1022676681496]
グラフ異常検出(GAD)は二項分類の問題である。
ガロン神経ネットワーク(GNN)は、同胞性隣人からの正常の分類に有用である。
ヘテロ親水性隣人の影響を緩和し、不変にするための枠組みを提案する。
論文 参考訳(メタデータ) (2024-01-25T13:07:34Z) - BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
自己指導型自己学習(BOURNE)に基づく新しい統合グラフ異常検出フレームワークを提案する。
ノードとエッジ間のコンテキスト埋め込みを交換することで、ノードとエッジの異常を相互に検出できる。
BOURNEは、負のサンプリングを必要としないため、大きなグラフを扱う際の効率を高めることができる。
論文 参考訳(メタデータ) (2023-07-28T00:44:57Z) - GAD-NR: Graph Anomaly Detection via Neighborhood Reconstruction [36.56631787651942]
グラフオートエンコーダ(GAE)はグラフデータをノード表現にエンコードし、これらの表現に基づいてグラフの再構成品質を評価することで異常を識別する。
グラフ異常検出のための近傍再構成を組み込んだ新しいGAEであるGAD-NRを提案する。
6つの実世界のデータセットで実施された大規模な実験は、GAD-NRの有効性を検証し、最先端の競合相手よりも顕著な改善(AUCでは最大30%)を示す。
論文 参考訳(メタデータ) (2023-06-02T23:23:34Z) - Truncated Affinity Maximization: One-class Homophily Modeling for Graph Anomaly Detection [21.731515133452977]
正常ノードは互いに強い接続・親和性を持つ傾向を示し, 異常ノードのホモフィリは正常ノードよりも著しく弱いことを示す。
この異常識別特性は、従来の異常検出目的を用いて構築される既存の異常検出方法によって無視される。
本稿では, 隣接ノードの局所親和性を最大化することにより, 異常測度に適したノード表現を学習するTruncated Affinity Maximization (TAM)を提案する。
論文 参考訳(メタデータ) (2023-05-29T08:39:16Z) - Cross-Domain Graph Anomaly Detection via Anomaly-aware Contrastive
Alignment [22.769474986808113]
クロスドメイングラフ異常検出(CD-GAD)は、非競合対象グラフにおける異常ノードを検出する問題を記述する。
本稿では,GADのための新しいドメイン適応手法,すなわちAnomaly-aware ContrastivealignedmenT (ACT)を導入する。
ACTは10種類の最先端GAD法で検出性能を大幅に向上させる。
論文 参考訳(メタデータ) (2022-12-02T11:21:48Z) - ResNorm: Tackling Long-tailed Degree Distribution Issue in Graph Neural
Networks via Normalization [80.90206641975375]
本稿では,正規化によるGNNの性能向上に焦点をあてる。
グラフ中のノード次数の長期分布を調べることにより、GNNの新しい正規化法を提案する。
ResNormの$scale$操作は、尾ノードの精度を向上させるために、ノード単位の標準偏差(NStd)分布を再設定する。
論文 参考訳(メタデータ) (2022-06-16T13:49:09Z) - Deep Graph-level Anomaly Detection by Glocal Knowledge Distillation [61.39364567221311]
グラフレベルの異常検出(GAD)は、その構造やノードの特徴に異常なグラフを検出する問題を記述している。
GADの課題の1つは、局所的および大域的非正則グラフの検出を可能にするグラフ表現を考案することである。
本稿では,グラフとノード表現の連成ランダム蒸留により,グローバルおよびローカルな正規パターン情報を豊富に学習するGADのための新しい深部異常検出手法を提案する。
論文 参考訳(メタデータ) (2021-12-19T05:04:53Z) - Graph Inference Learning for Semi-supervised Classification [50.55765399527556]
半教師付きノード分類の性能を高めるためのグラフ推論学習フレームワークを提案する。
推論過程の学習には,トレーニングノードから検証ノードへの構造関係のメタ最適化を導入する。
4つのベンチマークデータセットの総合的な評価は、最先端の手法と比較して提案したGILの優位性を示している。
論文 参考訳(メタデータ) (2020-01-17T02:52:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。