論文の概要: Normalize Then Propagate: Efficient Homophilous Regularization for Few-shot Semi-Supervised Node Classification
- arxiv url: http://arxiv.org/abs/2501.08581v1
- Date: Wed, 15 Jan 2025 05:01:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-16 15:52:06.053094
- Title: Normalize Then Propagate: Efficient Homophilous Regularization for Few-shot Semi-Supervised Node Classification
- Title(参考訳): ノーマライズドプロパゲーション:Few-shot Semi-Supervised Node 分類のための効率的なホモフィルス正規化
- Authors: Baoming Zhang, MingCai Chen, Jianqing Song, Shuangjie Li, Jie Zhang, Chongjun Wang,
- Abstract要約: グラフニューラルネットワーク(GNN)は、半教師付きノード分類において顕著な能力を示した。
既存のGNNの多くは、トレーニングのために大量のラベル付きデータに大きく依存している。
我々は、ラベルのないノードのホモフィリーな仮定を利用して、追加の監視信号を生成する、NormPropという新しいアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 7.704427722704987
- License:
- Abstract: Graph Neural Networks (GNNs) have demonstrated remarkable ability in semi-supervised node classification. However, most existing GNNs rely heavily on a large amount of labeled data for training, which is labor-intensive and requires extensive domain knowledge. In this paper, we first analyze the restrictions of GNNs generalization from the perspective of supervision signals in the context of few-shot semi-supervised node classification. To address these challenges, we propose a novel algorithm named NormProp, which utilizes the homophily assumption of unlabeled nodes to generate additional supervision signals, thereby enhancing the generalization against label scarcity. The key idea is to efficiently capture both the class information and the consistency of aggregation during message passing, via decoupling the direction and Euclidean norm of node representations. Moreover, we conduct a theoretical analysis to determine the upper bound of Euclidean norm, and then propose homophilous regularization to constraint the consistency of unlabeled nodes. Extensive experiments demonstrate that NormProp achieve state-of-the-art performance under low-label rate scenarios with low computational complexity.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、半教師付きノード分類において顕著な能力を示した。
しかし、既存のGNNの多くは、トレーニングのために大量のラベル付きデータに大きく依存しており、それは労働集約的であり、広範なドメイン知識を必要とする。
本稿では,まずGNNの一般化の制約を,数発のセミ教師付きノード分類の文脈における監視信号の観点から分析する。
これらの課題に対処するため,NormPropという新しいアルゴリズムを提案する。これはラベルなしノードのホモフィリな仮定を利用して追加の監視信号を生成し,ラベル不足に対する一般化を強化する。
キーとなるアイデアは、ノード表現の方向とユークリッドノルムを分離することで、メッセージパッシング中のクラス情報とアグリゲーションの一貫性の両方を効率的に捉えることである。
さらに、ユークリッドノルムの上界を決定するための理論的解析を行い、その上で、ラベルのないノードの整合性を制限するためにホモフィルス正規化を提案する。
NormPropは計算複雑性の低い低ラベルレートのシナリオで最先端の性能を達成することを実証した。
関連論文リスト
- Generative Semi-supervised Graph Anomaly Detection [42.02691404704764]
この研究は、グラフ内のノードの一部が正規であることが知られている、実用的な半教師付きグラフ異常検出(GAD)シナリオについて考察する。
我々は,通常のノードをよりよく活用するために,半教師付きシナリオのための新しいGAD手法(GGAD)を提案する。
GGADは、異常ノード(非対称な局所親和性と自中心的親密性)に関する2つの重要な先行情報を活用するように設計されている。
論文 参考訳(メタデータ) (2024-02-19T06:55:50Z) - Improving Expressivity of GNNs with Subgraph-specific Factor Embedded
Normalization [30.86182962089487]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを扱うための学習アーキテクチャの強力なカテゴリとして登場した。
我々は SUbgraph-sPEcific FactoR Embedded Normalization (SuperNorm) と呼ばれる専用プラグアンドプレイ正規化方式を提案する。
論文 参考訳(メタデータ) (2023-05-31T14:37:31Z) - Pseudo Contrastive Learning for Graph-based Semi-supervised Learning [67.37572762925836]
Pseudo Labelingは、グラフニューラルネットワーク(GNN)の性能向上に使用されるテクニックである。
我々はPseudo Contrastive Learning(PCL)と呼ばれるGNNのための一般的なフレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-19T10:34:08Z) - Revisiting Heterophily For Graph Neural Networks [42.41238892727136]
グラフニューラルネットワーク(GNN)は、関係帰納バイアスに基づくグラフ構造を用いて基本ニューラルネットワーク(NN)を拡張する(ホモフィリー仮定)
最近の研究は、NNと比較してパフォーマンスが不十分な、非自明なデータセットのセットを特定している。
論文 参考訳(メタデータ) (2022-10-14T08:00:26Z) - ResNorm: Tackling Long-tailed Degree Distribution Issue in Graph Neural
Networks via Normalization [80.90206641975375]
本稿では,正規化によるGNNの性能向上に焦点をあてる。
グラフ中のノード次数の長期分布を調べることにより、GNNの新しい正規化法を提案する。
ResNormの$scale$操作は、尾ノードの精度を向上させるために、ノード単位の標準偏差(NStd)分布を再設定する。
論文 参考訳(メタデータ) (2022-06-16T13:49:09Z) - On the Equivalence of Decoupled Graph Convolution Network and Label
Propagation [60.34028546202372]
いくつかの研究は、カップリングがデカップリングよりも劣っていることを示している。
有効性にもかかわらず、疎結合GCNの作用機構はよく理解されていない。
本稿では,分離GCNの欠陥を克服する適応的学習法(PTA)を提案する。
論文 参考訳(メタデータ) (2020-10-23T13:57:39Z) - Label-Consistency based Graph Neural Networks for Semi-supervised Node
Classification [47.753422069515366]
グラフニューラルネットワーク(GNN)は,グラフに基づく半教師付きノード分類において顕著な成功を収めている。
本稿では,GNNにおけるノードの受容領域を拡大するために,ノードペアが接続されていないが同一のラベルを持つラベル一貫性に基づくグラフニューラルネットワーク(LC-GNN)を提案する。
ベンチマークデータセットの実験では、LC-GNNはグラフベースの半教師付きノード分類において従来のGNNよりも優れていた。
論文 参考訳(メタデータ) (2020-07-27T11:17:46Z) - Unifying Graph Convolutional Neural Networks and Label Propagation [73.82013612939507]
LPAとGCNの関係を特徴・ラベルの平滑化と特徴・ラベルの影響の2点の観点から検討した。
理論解析に基づいて,ノード分類のためのGCNとLCAを統一するエンドツーエンドモデルを提案する。
我々のモデルは、既存の特徴に基づく注目モデルよりもタスク指向のノードラベルに基づく学習注意重みと見なすこともできる。
論文 参考訳(メタデータ) (2020-02-17T03:23:13Z) - Graph Inference Learning for Semi-supervised Classification [50.55765399527556]
半教師付きノード分類の性能を高めるためのグラフ推論学習フレームワークを提案する。
推論過程の学習には,トレーニングノードから検証ノードへの構造関係のメタ最適化を導入する。
4つのベンチマークデータセットの総合的な評価は、最先端の手法と比較して提案したGILの優位性を示している。
論文 参考訳(メタデータ) (2020-01-17T02:52:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。