SLADE: Detecting Dynamic Anomalies in Edge Streams without Labels via Self-Supervised Learning
- URL: http://arxiv.org/abs/2402.11933v3
- Date: Thu, 25 Jul 2024 00:46:33 GMT
- Title: SLADE: Detecting Dynamic Anomalies in Edge Streams without Labels via Self-Supervised Learning
- Authors: Jongha Lee, Sunwoo Kim, Kijung Shin,
- Abstract summary: We propose SLADE (Self-supervised Learning for Anomaly Detection in Edge Streams) for rapid detection of dynamic anomalies in edge streams.
In dynamic anomaly detection across four real-world datasets, SLADE outperforms nine competing methods.
- Score: 24.41015179377796
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To detect anomalies in real-world graphs, such as social, email, and financial networks, various approaches have been developed. While they typically assume static input graphs, most real-world graphs grow over time, naturally represented as edge streams. In this context, we aim to achieve three goals: (a) instantly detecting anomalies as they occur, (b) adapting to dynamically changing states, and (c) handling the scarcity of dynamic anomaly labels. In this paper, we propose SLADE (Self-supervised Learning for Anomaly Detection in Edge Streams) for rapid detection of dynamic anomalies in edge streams, without relying on labels. SLADE detects the shifts of nodes into abnormal states by observing deviations in their interaction patterns over time. To this end, it trains a deep neural network to perform two self-supervised tasks: (a) minimizing drift in node representations and (b) generating long-term interaction patterns from short-term ones. Failure in these tasks for a node signals its deviation from the norm. Notably, the neural network and tasks are carefully designed so that all required operations can be performed in constant time (w.r.t. the graph size) in response to each new edge in the input stream. In dynamic anomaly detection across four real-world datasets, SLADE outperforms nine competing methods, even those leveraging label supervision.
Related papers
- Detecting Anomalies in Dynamic Graphs via Memory enhanced Normality [39.476378833827184]
Anomaly detection in dynamic graphs presents a significant challenge due to the temporal evolution of graph structures and attributes.
We introduce a novel spatial- temporal memories-enhanced graph autoencoder (STRIPE)
STRIPE significantly outperforms existing methods with 5.8% improvement in AUC scores and 4.62X faster in training time.
arXiv Detail & Related papers (2024-03-14T02:26:10Z) - Multitask Active Learning for Graph Anomaly Detection [48.690169078479116]
We propose a novel MultItask acTIve Graph Anomaly deTEction framework, namely MITIGATE.
By coupling node classification tasks, MITIGATE obtains the capability to detect out-of-distribution nodes without known anomalies.
Empirical studies on four datasets demonstrate that MITIGATE significantly outperforms the state-of-the-art methods for anomaly detection.
arXiv Detail & Related papers (2024-01-24T03:43:45Z) - ADA-GAD: Anomaly-Denoised Autoencoders for Graph Anomaly Detection [84.0718034981805]
We introduce a novel framework called Anomaly-Denoised Autoencoders for Graph Anomaly Detection (ADA-GAD)
In the first stage, we design a learning-free anomaly-denoised augmentation method to generate graphs with reduced anomaly levels.
In the next stage, the decoders are retrained for detection on the original graph.
arXiv Detail & Related papers (2023-12-22T09:02:01Z) - BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
We propose a novel unified graph anomaly detection framework based on bootstrapped self-supervised learning (named BOURNE)
By swapping the context embeddings between nodes and edges, we enable the mutual detection of node and edge anomalies.
BOURNE can eliminate the need for negative sampling, thereby enhancing its efficiency in handling large graphs.
arXiv Detail & Related papers (2023-07-28T00:44:57Z) - SAD: Semi-Supervised Anomaly Detection on Dynamic Graphs [11.819993729810257]
Anomaly detection aims to distinguish abnormal instances that deviate significantly from the majority of benign ones.
graph neural networks become increasingly popular in tackling the anomaly detection problem.
We present semi-supervised anomaly detection (SAD), an end-to-end framework for anomaly detection on dynamic graphs.
arXiv Detail & Related papers (2023-05-23T01:05:34Z) - Deep Graph Stream SVDD: Anomaly Detection in Cyber-Physical Systems [17.373668215331737]
We propose a new approach called deep graph vector data description (SVDD) for anomaly detection.
We first use a transformer to preserve both short and long temporal patterns monitoring data in temporal embeddings.
We cluster these embeddings according to sensor type and utilize them to estimate the change in connectivity between various sensors to construct a new weighted graph.
arXiv Detail & Related papers (2023-02-24T22:14:39Z) - Deep Graph-level Anomaly Detection by Glocal Knowledge Distillation [61.39364567221311]
Graph-level anomaly detection (GAD) describes the problem of detecting graphs that are abnormal in their structure and/or the features of their nodes.
One of the challenges in GAD is to devise graph representations that enable the detection of both locally- and globally-anomalous graphs.
We introduce a novel deep anomaly detection approach for GAD that learns rich global and local normal pattern information by joint random distillation of graph and node representations.
arXiv Detail & Related papers (2021-12-19T05:04:53Z) - Fast and Accurate Anomaly Detection in Dynamic Graphs with a Two-Pronged
Approach [49.25767340466445]
We propose AnomRank, an online algorithm for anomaly detection in dynamic graphs.
AnomRank uses a two-pronged approach defining two novel metrics for anomalousness.
We show theoretically and experimentally that the two-pronged approach successfully detects two common types of anomalies.
arXiv Detail & Related papers (2020-11-26T01:38:27Z) - Laplacian Change Point Detection for Dynamic Graphs [10.556288610354997]
We propose Laplacian Anomaly Detection (LAD) which uses the spectrum of the Laplacian matrix of the graph structure at each snapshot to obtain low dimensional embeddings.
In synthetic experiments, LAD outperforms the state-of-the-art method.
We also evaluate our method on three real dynamic networks: UCI message network, US senate co-sponsorship network and Canadian bill voting network.
arXiv Detail & Related papers (2020-07-02T16:24:24Z) - Structural Temporal Graph Neural Networks for Anomaly Detection in
Dynamic Graphs [54.13919050090926]
We propose an end-to-end structural temporal Graph Neural Network model for detecting anomalous edges in dynamic graphs.
In particular, we first extract the $h$-hop enclosing subgraph centered on the target edge and propose the node labeling function to identify the role of each node in the subgraph.
Based on the extracted features, we utilize Gated recurrent units (GRUs) to capture the temporal information for anomaly detection.
arXiv Detail & Related papers (2020-05-15T09:17:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.