NEO-BENCH: Evaluating Robustness of Large Language Models with Neologisms
- URL: http://arxiv.org/abs/2402.12261v4
- Date: Tue, 13 Aug 2024 15:20:13 GMT
- Title: NEO-BENCH: Evaluating Robustness of Large Language Models with Neologisms
- Authors: Jonathan Zheng, Alan Ritter, Wei Xu,
- Abstract summary: We create a diverse resource of recent English neologisms by using several popular collection methods.
We analyze temporal drift using neologisms by comparing sentences containing new words with near-identical sentences that replace neologisms with existing substitute words.
Model performance is nearly halved in machine translation when a single neologism is introduced in a sentence.
- Score: 19.863120275409393
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The performance of Large Language Models (LLMs) degrades from the temporal drift between data used for model training and newer text seen during inference. One understudied avenue of language change causing data drift is the emergence of neologisms -- new word forms -- over time. We create a diverse resource of recent English neologisms by using several popular collection methods. We analyze temporal drift using neologisms by comparing sentences containing new words with near-identical sentences that replace neologisms with existing substitute words. Model performance is nearly halved in machine translation when a single neologism is introduced in a sentence. Motivated by these results, we construct a benchmark to evaluate LLMs' ability to generalize to neologisms with various natural language understanding tasks and model perplexity. Models with later knowledge cutoff dates yield lower perplexities and perform better in downstream tasks. LLMs are also affected differently based on the linguistic origins of words, indicating that neologisms are complex for static LLMs to address. We will release our benchmark and code for reproducing our experiments.
Related papers
- Understanding and Mitigating Language Confusion in LLMs [76.96033035093204]
We evaluate 15 typologically diverse languages with existing and newly-created English and multilingual prompts.
We find that Llama Instruct and Mistral models exhibit high degrees of language confusion.
We find that language confusion can be partially mitigated via few-shot prompting, multilingual SFT and preference tuning.
arXiv Detail & Related papers (2024-06-28T17:03:51Z) - Holmes: A Benchmark to Assess the Linguistic Competence of Language Models [59.627729608055006]
We introduce Holmes, a new benchmark designed to assess language models (LMs) linguistic competence.
We use computation-based probing to examine LMs' internal representations regarding distinct linguistic phenomena.
As a result, we meet recent calls to disentangle LMs' linguistic competence from other cognitive abilities.
arXiv Detail & Related papers (2024-04-29T17:58:36Z) - The Ups and Downs of Large Language Model Inference with Vocabulary Trimming by Language Heuristics [74.99898531299148]
This research examines vocabulary trimming (VT) inspired by restricting embedding entries to the language of interest to bolster time and memory efficiency.
We apply two languages to trim the full vocabulary - Unicode-based script filtering and corpus-based selection - to different language families and sizes.
It is found that VT reduces the memory usage of small models by nearly 50% and has an upper bound of 25% improvement in generation speed.
arXiv Detail & Related papers (2023-11-16T09:35:50Z) - Jamp: Controlled Japanese Temporal Inference Dataset for Evaluating
Generalization Capacity of Language Models [18.874880342410876]
We present Jamp, a Japanese benchmark focused on temporal inference.
Our dataset includes a range of temporal inference patterns, which enables us to conduct fine-grained analysis.
We evaluate the generalization capacities of monolingual/multilingual LMs by splitting our dataset based on tense fragments.
arXiv Detail & Related papers (2023-06-19T07:00:14Z) - Always Keep your Target in Mind: Studying Semantics and Improving
Performance of Neural Lexical Substitution [124.99894592871385]
We present a large-scale comparative study of lexical substitution methods employing both old and most recent language models.
We show that already competitive results achieved by SOTA LMs/MLMs can be further substantially improved if information about the target word is injected properly.
arXiv Detail & Related papers (2022-06-07T16:16:19Z) - Do Not Fire the Linguist: Grammatical Profiles Help Language Models
Detect Semantic Change [6.7485485663645495]
We first compare the performance of grammatical profiles against that of a multilingual neural language model (XLM-R) on 10 datasets, covering 7 languages.
Our results show that ensembling grammatical profiles with XLM-R improves semantic change detection performance for most datasets and languages.
arXiv Detail & Related papers (2022-04-12T11:20:42Z) - Towards Language Modelling in the Speech Domain Using Sub-word
Linguistic Units [56.52704348773307]
We propose a novel LSTM-based generative speech LM based on linguistic units including syllables and phonemes.
With a limited dataset, orders of magnitude smaller than that required by contemporary generative models, our model closely approximates babbling speech.
We show the effect of training with auxiliary text LMs, multitask learning objectives, and auxiliary articulatory features.
arXiv Detail & Related papers (2021-10-31T22:48:30Z) - A Comparative Study of Lexical Substitution Approaches based on Neural
Language Models [117.96628873753123]
We present a large-scale comparative study of popular neural language and masked language models.
We show that already competitive results achieved by SOTA LMs/MLMs can be further improved if information about the target word is injected properly.
arXiv Detail & Related papers (2020-05-29T18:43:22Z) - Morphological Word Segmentation on Agglutinative Languages for Neural
Machine Translation [8.87546236839959]
We propose a morphological word segmentation method on the source-side for Neural machine translation (NMT)
It incorporates morphology knowledge to preserve the linguistic and semantic information in the word structure while reducing the vocabulary size at training time.
It can be utilized as a preprocessing tool to segment the words in agglutinative languages for other natural language processing (NLP) tasks.
arXiv Detail & Related papers (2020-01-02T10:05:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.