論文の概要: Ontology Enhanced Claim Detection
- arxiv url: http://arxiv.org/abs/2402.12282v1
- Date: Mon, 19 Feb 2024 16:50:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-20 15:20:04.073746
- Title: Ontology Enhanced Claim Detection
- Title(参考訳): オントロジによるクレーム検出
- Authors: Zehra Melce H\"us\"unbeyi and Tatjana Scheffler
- Abstract要約: 文に基づくクレーム検出のためのオントロジー強化モデルを提案する。
ClaimBusterとNewsClaimsデータセットのクレーム検出を行うために,BERT文の埋め込みで知識ベースを融合した。
我々のアプローチは、他の統計的およびニューラルネットワークモデルと比較して、これらの小さなアンバランスなデータセットで最も良い結果を示した。
- 参考スコア(独自算出の注目度): 1.0878040851637998
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose an ontology enhanced model for sentence based claim detection. We
fused ontology embeddings from a knowledge base with BERT sentence embeddings
to perform claim detection for the ClaimBuster and the NewsClaims datasets. Our
ontology enhanced approach showed the best results with these small-sized
unbalanced datasets, compared to other statistical and neural machine learning
models. The experiments demonstrate that adding domain specific features
(either trained word embeddings or knowledge graph metadata) can improve
traditional ML methods. In addition, adding domain knowledge in the form of
ontology embeddings helps avoid the bias encountered in neural network based
models, for example the pure BERT model bias towards larger classes in our
small corpus.
- Abstract(参考訳): 文に基づくクレーム検出のためのオントロジー強化モデルを提案する。
ClaimBusterとNewsClaimsデータセットのクレーム検出を行うため,知識ベースからBERT文埋め込みにオントロジー埋め込みを融合した。
我々のオントロジー強化アプローチは、他の統計的およびニューラル機械学習モデルと比較して、これらの小さなアンバランスデータセットの最良の結果を示した。
実験では、ドメイン固有の機能(トレーニングされた単語埋め込みやナレッジグラフメタデータ)を追加することで、従来のMLメソッドを改善できることが実証された。
さらに、オントロジー埋め込みという形でドメイン知識を追加することで、ニューラルネットワークベースのモデルで発生するバイアスを回避することができる。
関連論文リスト
- BEND: Bagging Deep Learning Training Based on Efficient Neural Network Diffusion [56.9358325168226]
BEND(Efficient Neural Network Diffusion)に基づくバッグング深層学習学習アルゴリズムを提案する。
我々のアプローチは単純だが効果的であり、まず複数のトレーニングされたモデルの重みとバイアスを入力として、オートエンコーダと潜伏拡散モデルを訓練する。
提案したBENDアルゴリズムは,元のトレーニングモデルと拡散モデルの両方の平均および中央値の精度を一貫して向上させることができる。
論文 参考訳(メタデータ) (2024-03-23T08:40:38Z) - Pruning neural network models for gene regulatory dynamics using data and domain knowledge [24.670514977455202]
本稿では,モデルフィッティングにおけるドメイン固有構造情報を用いてネットワークプルーニングをガイドするフレームワークであるDASHを提案する。
DASHは、遺伝子相互作用パートナーに関する知識を用いて、一般的な刈り取り法よりも大きなマージンで優れていることを示す。
論文 参考訳(メタデータ) (2024-03-05T23:02:55Z) - Improving Biomedical Entity Linking with Retrieval-enhanced Learning [53.24726622142558]
$k$NN-BioELは、トレーニングコーパス全体から同様のインスタンスを予測のヒントとして参照する機能を備えたBioELモデルを提供する。
k$NN-BioELは、いくつかのデータセットで最先端のベースラインを上回ります。
論文 参考訳(メタデータ) (2023-12-15T14:04:23Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
補間系の性能に影響を及ぼす要因を特徴付ける一般モデルのクラスに対して,PAC-Bayes境界がいかに得られるかを示す。
オーバーパラメータ化モデルに対するテスト誤差が、モデルとパラメータの初期化スキームの組み合わせによって課される暗黙の正規化の品質に依存するかの定量化を行う。
論文 参考訳(メタデータ) (2023-11-13T01:48:08Z) - A Physics-Guided Neural Operator Learning Approach to Model Biological
Tissues from Digital Image Correlation Measurements [3.65211252467094]
本稿では, 生体組織モデリングにおけるデータ駆動型相関について述べる。これは, 未知の負荷シナリオ下でのデジタル画像相関(DIC)測定に基づいて変位場を予測することを目的としている。
ブタ三尖弁リーフレット上の多軸延伸プロトコルのDIC変位追跡測定から材料データベースを構築した。
材料応答は、負荷から結果の変位場への解演算子としてモデル化され、材料特性はデータから暗黙的に学習され、自然にネットワークパラメータに埋め込まれる。
論文 参考訳(メタデータ) (2022-04-01T04:56:41Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
グラフ表現と学習を伴う新しい学習パラダイムを提案する。
本フレームワークは,1) 下位モデルとしてのバックボーンネットワーク(フィードフォワードニューラルネットなど)が,予測ラベルの入力および出力として機能を取り,2) 上位モデルとしてのグラフニューラルネットワークが,観測データから構築された特徴データグラフをメッセージパッシングすることで,新機能の埋め込みを外挿することを学ぶ。
論文 参考訳(メタデータ) (2021-10-09T09:02:45Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
少量のラベル付きテストデータのみを用いて機械学習モデルを効率的にテストする新しいフレームワークを提案する。
ベイズニューラルネットワーク(bnn)を用いたモデルアンダーテストの関心指標の推定が目的である。
論文 参考訳(メタデータ) (2021-04-11T12:14:04Z) - Efficacy of Bayesian Neural Networks in Active Learning [11.609770399591516]
ベイズニューラルネットワークは、アンサンブルに基づく不確実性を捕捉する技術よりも効率的であることを示す。
また,近年,モンテカルロのドロップアウトよりも効果的であることが判明したアンサンブル技法の重要な欠点も明らかにした。
論文 参考訳(メタデータ) (2021-04-02T06:02:11Z) - Siloed Federated Learning for Multi-Centric Histopathology Datasets [0.17842332554022694]
本稿では,医学領域における深層学習アーキテクチャのための新しいフェデレーション学習手法を提案する。
局所統計バッチ正規化(BN)層が導入され、協調的に訓練されるが中心に固有のモデルが作られる。
本研究では,Camelyon16およびCamelyon17データセットから抽出した腫瘍組織像の分類法についてベンチマークを行った。
論文 参考訳(メタデータ) (2020-08-17T15:49:30Z) - Domain Knowledge Integration By Gradient Matching For Sample-Efficient
Reinforcement Learning [0.0]
本研究では,モデルフリー学習者を支援するために,ダイナミックスからの目標勾配情報を活用することで,サンプル効率を向上させる勾配マッチングアルゴリズムを提案する。
本稿では,モデルに基づく学習者からの勾配情報と,抽象的な低次元空間におけるモデル自由成分とをマッチングする手法を提案する。
論文 参考訳(メタデータ) (2020-05-28T05:02:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。