An Adversarial Approach to Evaluating the Robustness of Event Identification Models
- URL: http://arxiv.org/abs/2402.12338v2
- Date: Mon, 22 Apr 2024 17:56:01 GMT
- Title: An Adversarial Approach to Evaluating the Robustness of Event Identification Models
- Authors: Obai Bahwal, Oliver Kosut, Lalitha Sankar,
- Abstract summary: This paper considers a physics-based modal decomposition method to extract features for event classification.
The resulting classifiers are tested against an adversarial algorithm to evaluate their robustness.
- Score: 12.862865254507179
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Intelligent machine learning approaches are finding active use for event detection and identification that allow real-time situational awareness. Yet, such machine learning algorithms have been shown to be susceptible to adversarial attacks on the incoming telemetry data. This paper considers a physics-based modal decomposition method to extract features for event classification and focuses on interpretable classifiers including logistic regression and gradient boosting to distinguish two types of events: load loss and generation loss. The resulting classifiers are then tested against an adversarial algorithm to evaluate their robustness. The adversarial attack is tested in two settings: the white box setting, wherein the attacker knows exactly the classification model; and the gray box setting, wherein the attacker has access to historical data from the same network as was used to train the classifier, but does not know the classification model. Thorough experiments on the synthetic South Carolina 500-bus system highlight that a relatively simpler model such as logistic regression is more susceptible to adversarial attacks than gradient boosting.
Related papers
- Black-box Adversarial Transferability: An Empirical Study in Cybersecurity Perspective [0.0]
In adversarial machine learning, malicious users try to fool the deep learning model by inserting adversarial perturbation inputs into the model during its training or testing phase.
We empirically test the black-box adversarial transferability phenomena in cyber attack detection systems.
The results indicate that any deep learning model is highly susceptible to adversarial attacks, even if the attacker does not have access to the internal details of the target model.
arXiv Detail & Related papers (2024-04-15T06:56:28Z) - How adversarial attacks can disrupt seemingly stable accurate classifiers [76.95145661711514]
Adversarial attacks dramatically change the output of an otherwise accurate learning system using a seemingly inconsequential modification to a piece of input data.
Here, we show that this may be seen as a fundamental feature of classifiers working with high dimensional input data.
We introduce a simple generic and generalisable framework for which key behaviours observed in practical systems arise with high probability.
arXiv Detail & Related papers (2023-09-07T12:02:00Z) - Adversarial Attacks are a Surprisingly Strong Baseline for Poisoning
Few-Shot Meta-Learners [28.468089304148453]
We attack amortized meta-learners, which allows us to craft colluding sets of inputs that fool the system's learning algorithm.
We show that in a white box setting, these attacks are very successful and can cause the target model's predictions to become worse than chance.
We explore two hypotheses to explain this: 'overfitting' by the attack, and mismatch between the model on which the attack is generated and that to which the attack is transferred.
arXiv Detail & Related papers (2022-11-23T14:55:44Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - Towards A Conceptually Simple Defensive Approach for Few-shot
classifiers Against Adversarial Support Samples [107.38834819682315]
We study a conceptually simple approach to defend few-shot classifiers against adversarial attacks.
We propose a simple attack-agnostic detection method, using the concept of self-similarity and filtering.
Our evaluation on the miniImagenet (MI) and CUB datasets exhibit good attack detection performance.
arXiv Detail & Related papers (2021-10-24T05:46:03Z) - Prototypical Classifier for Robust Class-Imbalanced Learning [64.96088324684683]
We propose textitPrototypical, which does not require fitting additional parameters given the embedding network.
Prototypical produces balanced and comparable predictions for all classes even though the training set is class-imbalanced.
We test our method on CIFAR-10LT, CIFAR-100LT and Webvision datasets, observing that Prototypical obtains substaintial improvements compared with state of the arts.
arXiv Detail & Related papers (2021-10-22T01:55:01Z) - ExAD: An Ensemble Approach for Explanation-based Adversarial Detection [17.455233006559734]
We propose ExAD, a framework to detect adversarial examples using an ensemble of explanation techniques.
We evaluate our approach using six state-of-the-art adversarial attacks on three image datasets.
arXiv Detail & Related papers (2021-03-22T00:53:07Z) - Leveraging Siamese Networks for One-Shot Intrusion Detection Model [0.0]
Supervised Machine Learning (ML) to enhance Intrusion Detection Systems has been the subject of significant research.
retraining the models in-situ renders the network susceptible to attacks owing to the time-window required to acquire a sufficient volume of data.
Here, a complementary approach referred to as 'One-Shot Learning', whereby a limited number of examples of a new attack-class is used to identify a new attack-class.
A Siamese Network is trained to differentiate between classes based on pairs similarities, rather than features, allowing to identify new and previously unseen attacks.
arXiv Detail & Related papers (2020-06-27T11:40:01Z) - Adversarial Self-Supervised Contrastive Learning [62.17538130778111]
Existing adversarial learning approaches mostly use class labels to generate adversarial samples that lead to incorrect predictions.
We propose a novel adversarial attack for unlabeled data, which makes the model confuse the instance-level identities of the perturbed data samples.
We present a self-supervised contrastive learning framework to adversarially train a robust neural network without labeled data.
arXiv Detail & Related papers (2020-06-13T08:24:33Z) - Adversarial Detection and Correction by Matching Prediction
Distributions [0.0]
The detector almost completely neutralises powerful attacks like Carlini-Wagner or SLIDE on MNIST and Fashion-MNIST.
We show that our method is still able to detect the adversarial examples in the case of a white-box attack where the attacker has full knowledge of both the model and the defence.
arXiv Detail & Related papers (2020-02-21T15:45:42Z) - Certified Robustness to Label-Flipping Attacks via Randomized Smoothing [105.91827623768724]
Machine learning algorithms are susceptible to data poisoning attacks.
We present a unifying view of randomized smoothing over arbitrary functions.
We propose a new strategy for building classifiers that are pointwise-certifiably robust to general data poisoning attacks.
arXiv Detail & Related papers (2020-02-07T21:28:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.