Constrained Multi-objective Optimization with Deep Reinforcement Learning Assisted Operator Selection
- URL: http://arxiv.org/abs/2402.12381v1
- Date: Mon, 15 Jan 2024 09:51:19 GMT
- Title: Constrained Multi-objective Optimization with Deep Reinforcement Learning Assisted Operator Selection
- Authors: Fei Ming, Wenyin Gong, Ling Wang, Yaochu Jin,
- Abstract summary: This work proposes an online operator selection framework assisted by Deep Reinforcement Learning.
The proposed approach can adaptively select an operator that maximizes the improvement of the population according to the current state.
The framework is embedded into four popular CMOEAs and assessed on 42 benchmark problems.
- Score: 28.088046969822543
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Solving constrained multi-objective optimization problems with evolutionary algorithms has attracted considerable attention. Various constrained multi-objective optimization evolutionary algorithms (CMOEAs) have been developed with the use of different algorithmic strategies, evolutionary operators, and constraint-handling techniques. The performance of CMOEAs may be heavily dependent on the operators used, however, it is usually difficult to select suitable operators for the problem at hand. Hence, improving operator selection is promising and necessary for CMOEAs. This work proposes an online operator selection framework assisted by Deep Reinforcement Learning. The dynamics of the population, including convergence, diversity, and feasibility, are regarded as the state; the candidate operators are considered as actions; and the improvement of the population state is treated as the reward. By using a Q-Network to learn a policy to estimate the Q-values of all actions, the proposed approach can adaptively select an operator that maximizes the improvement of the population according to the current state and thereby improve the algorithmic performance. The framework is embedded into four popular CMOEAs and assessed on 42 benchmark problems. The experimental results reveal that the proposed Deep Reinforcement Learning-assisted operator selection significantly improves the performance of these CMOEAs and the resulting algorithm obtains better versatility compared to nine state-of-the-art CMOEAs.
Related papers
- Integrating Chaotic Evolutionary and Local Search Techniques in Decision Space for Enhanced Evolutionary Multi-Objective Optimization [1.8130068086063336]
This paper focuses on both Single-Objective Multi-Modal Optimization (SOMMOP) and Multi-Objective Optimization (MOO)
In SOMMOP, we integrate chaotic evolution with niching techniques, as well as Persistence-Based Clustering combined with Gaussian mutation.
For MOO, we extend these methods into a comprehensive framework that incorporates Uncertainty-Based Selection, Adaptive Tuning, and introduces a radius ( R ) concept in deterministic crowding.
arXiv Detail & Related papers (2024-11-12T15:18:48Z) - Model Uncertainty in Evolutionary Optimization and Bayesian Optimization: A Comparative Analysis [5.6787965501364335]
Black-box optimization problems are common in many real-world applications.
These problems require optimization through input-output interactions without access to internal workings.
Two widely used gradient-free optimization techniques are employed to address such challenges.
This paper aims to elucidate the similarities and differences in the utilization of model uncertainty between these two methods.
arXiv Detail & Related papers (2024-03-21T13:59:19Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Adaptive operator selection utilising generalised experience [0.8287206589886879]
Reinforcement Learning (RL) has recently been proposed as a way to customise and shape up a highly effective adaptive selection system.
This paper proposes and assesses a RL-based novel approach to help develop a generalised framework for gaining, processing, and utilising the experiences for both the immediate and future use.
arXiv Detail & Related papers (2023-12-04T00:27:59Z) - Evolutionary Solution Adaption for Multi-Objective Metal Cutting Process
Optimization [59.45414406974091]
We introduce a framework for system flexibility that allows us to study the ability of an algorithm to transfer solutions from previous optimization tasks.
We study the flexibility of NSGA-II, which we extend by two variants: 1) varying goals, that optimize solutions for two tasks simultaneously to obtain in-between source solutions expected to be more adaptable, and 2) active-inactive genotype, that accommodates different possibilities that can be activated or deactivated.
Results show that adaption with standard NSGA-II greatly reduces the number of evaluations required for optimization to a target goal, while the proposed variants further improve the adaption costs.
arXiv Detail & Related papers (2023-05-31T12:07:50Z) - Graph Reinforcement Learning for Operator Selection in the ALNS
Metaheuristic [0.0]
We formulate the choice of operators as a Markov Decision Process.
We propose a practical approach based on Deep Reinforcement Learning and Graph Neural Networks.
arXiv Detail & Related papers (2023-02-28T15:39:42Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - Socio-cognitive Optimization of Time-delay Control Problems using
Evolutionary Metaheuristics [89.24951036534168]
Metaheuristics are universal optimization algorithms which should be used for solving difficult problems, unsolvable by classic approaches.
In this paper we aim at constructing novel socio-cognitive metaheuristic based on castes, and apply several versions of this algorithm to optimization of time-delay system model.
arXiv Detail & Related papers (2022-10-23T22:21:10Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Enhanced Innovized Repair Operator for Evolutionary Multi- and
Many-objective Optimization [5.885238773559015]
"Innovization" is a task of learning common relationships among some or all of the Pareto-optimal (PO) solutions in optimisation problems.
Recent studies have shown that a chronological sequence of non-dominated solutions also possess salient patterns that can be used to learn problem features.
We propose a machine-learning- (ML-) assisted modelling approach that learns the modifications in design variables needed to advance population members towards the Pareto-optimal set.
arXiv Detail & Related papers (2020-11-21T10:29:15Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOS is a global optimization algorithm for constrained and unconstrained problems of real-valued variables.
It implements a number of improvements to the well-known Differential Evolution (DE) algorithm.
Results prove that EOSis capable of achieving increased performance compared to state-of-the-art single-population self-adaptive DE algorithms.
arXiv Detail & Related papers (2020-07-09T10:19:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.