論文の概要: Multi-class Temporal Logic Neural Networks
- arxiv url: http://arxiv.org/abs/2402.12397v2
- Date: Tue, 25 Jun 2024 02:58:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 20:19:03.227450
- Title: Multi-class Temporal Logic Neural Networks
- Title(参考訳): 多クラス時間論理ニューラルネットワーク
- Authors: Danyang Li, Roberto Tron,
- Abstract要約: 時系列データは、ドローンや自動運転車のような自律システムの振る舞いを表すことができる。
本稿では,時系列データのマルチクラス分類のためのSTL仕様を表すニューラルネットワークを組み合わせる手法を提案する。
提案手法を2つのデータセット上で評価し,最先端のベースラインと比較する。
- 参考スコア(独自算出の注目度): 8.20828081284034
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time-series data can represent the behaviors of autonomous systems, such as drones and self-driving cars. The task of binary and multi-class classification for time-series data has become a prominent area of research. Neural networks represent a popular approach to classifying data; However, they lack interpretability, which poses a significant challenge in extracting meaningful information from them. Signal Temporal Logic (STL) is a formalism that describes the properties of timed behaviors. We propose a method that combines all of the above: neural networks that represent STL specifications for multi-class classification of time-series data. We offer two key contributions: 1) We introduce a notion of margin for multi-class classification, and 2) we introduce STL-based attributes for enhancing the interpretability of the results. We evaluate our method on two datasets and compare it with state-of-the-art baselines.
- Abstract(参考訳): 時系列データは、ドローンや自動運転車のような自律システムの振る舞いを表すことができる。
時系列データに対する二項・多クラス分類の課題は、研究の目立った領域となっている。
ニューラルネットワークは、データを分類する一般的なアプローチである。しかし、解釈可能性に欠けており、それらから意味のある情報を抽出する上で大きな課題となっている。
信号時相論理 (Signal Temporal Logic, STL) は、時間的挙動の特性を記述する形式主義である。
時系列データのマルチクラス分類のためのSTL仕様を表すニューラルネットワークを提案する。
主なコントリビューションは2つあります。
1)マルチクラス分類におけるマージンの概念を導入する。
2)結果の解釈可能性を高めるために,STLに基づく属性を導入する。
提案手法を2つのデータセット上で評価し,最先端のベースラインと比較する。
関連論文リスト
- MTS2Graph: Interpretable Multivariate Time Series Classification with
Temporal Evolving Graphs [1.1756822700775666]
入力代表パターンを抽出・クラスタリングすることで時系列データを解釈する新しいフレームワークを提案する。
UCR/UEAアーカイブの8つのデータセットとHARとPAMデータセットで実験を行います。
論文 参考訳(メタデータ) (2023-06-06T16:24:27Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Learning Signal Temporal Logic through Neural Network for Interpretable
Classification [13.829082181692872]
本稿では時系列行動の分類のための説明可能なニューラルネットワーク・シンボリック・フレームワークを提案する。
提案手法の計算効率, コンパクト性, 解釈可能性について, シナリオの駆動と海軍の監視事例研究を通じて実証する。
論文 参考訳(メタデータ) (2022-10-04T21:11:54Z) - CHALLENGER: Training with Attribution Maps [63.736435657236505]
ニューラルネットワークのトレーニングに属性マップを利用すると、モデルの正規化が向上し、性能が向上することを示す。
特に、我々の汎用的なドメインに依存しないアプローチは、ビジョン、自然言語処理、時系列タスクにおける最先端の結果をもたらすことを示す。
論文 参考訳(メタデータ) (2022-05-30T13:34:46Z) - Classification of Long Sequential Data using Circular Dilated
Convolutional Neural Networks [10.014879130837912]
循環拡張畳み込みニューラルネットワーク(CDIL-CNN)と呼ばれる対称型マルチスケールアーキテクチャを提案する。
本モデルでは,全ての位置で分類ロジットを付与し,簡単なアンサンブル学習を適用し,より良い判断を下すことができる。
論文 参考訳(メタデータ) (2022-01-06T16:58:59Z) - Towards Similarity-Aware Time-Series Classification [51.2400839966489]
時系列データマイニングの基本課題である時系列分類(TSC)について検討する。
グラフニューラルネットワーク(GNN)を用いて類似情報をモデル化するフレームワークであるSimTSCを提案する。
論文 参考訳(メタデータ) (2022-01-05T02:14:57Z) - Interpretable Time-series Representation Learning With Multi-Level
Disentanglement [56.38489708031278]
Disentangle Time Series (DTS)は、シーケンシャルデータのための新しいDisentanglement Enhanceingフレームワークである。
DTSは時系列の解釈可能な表現として階層的意味概念を生成する。
DTSは、セマンティック概念の解釈性が高く、下流アプリケーションで優れたパフォーマンスを実現します。
論文 参考訳(メタデータ) (2021-05-17T22:02:24Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
マルチショット設定のモデル一般化能力を向上させるための3つの手法を検討する。
ラベル付きデータの比率の異なる10の公開nerデータセットについて経験的比較を行う。
マルチショットとトレーニングフリーの両方の設定で最新の結果を作成します。
論文 参考訳(メタデータ) (2020-12-29T23:43:16Z) - Interpretable Time-series Classification on Few-shot Samples [27.05851877375113]
本稿では,少数の時系列分類のための解釈可能なニューラルネットワーク,すなわちtextitDual Prototypeal Shapelet Networks (DPSN)を提案する。
DPSNは, 二つの粒度からモデルを解釈する: 1) 代表時系列サンプルを用いた大域的概要, 2) 識別型シェープレットを用いた局所的ハイライト。
我々は、公開ベンチマークデータセットから18個のショットTSCデータセットを抽出し、ベースラインとの比較により提案手法の評価を行った。
論文 参考訳(メタデータ) (2020-06-03T03:47:14Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
多変量時系列データに特化して設計された汎用グラフニューラルネットワークフレームワークを提案する。
グラフ学習モジュールを用いて,変数間の一方向関係を自動的に抽出する。
提案手法は,4つのベンチマークデータセットのうち3つにおいて,最先端のベースライン手法よりも優れている。
論文 参考訳(メタデータ) (2020-05-24T04:02:18Z) - Time Series Data Augmentation for Neural Networks by Time Warping with a
Discriminative Teacher [17.20906062729132]
本稿では,ガイド付きワープと呼ばれる新しい時系列データ拡張を提案する。
ガイド付きワープは動的時間ワープ(DTW)と形状DTWの要素アライメント特性を利用する。
我々は、深部畳み込みニューラルネットワーク(CNN)とリカレントニューラルネットワーク(RNN)を用いて、2015 UCR Time Series Archiveにある85のデータセットすべてに対する手法の評価を行った。
論文 参考訳(メタデータ) (2020-04-19T06:33:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。