論文の概要: ModelGPT: Unleashing LLM's Capabilities for Tailored Model Generation
- arxiv url: http://arxiv.org/abs/2402.12408v1
- Date: Sun, 18 Feb 2024 11:24:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-21 18:50:45.025699
- Title: ModelGPT: Unleashing LLM's Capabilities for Tailored Model Generation
- Title(参考訳): ModelGPT: モデル生成のためのLLMの能力の解放
- Authors: Zihao Tang, Zheqi Lv, Shengyu Zhang, Fei Wu, Kun Kuang
- Abstract要約: 本稿では,ユーザが提供するデータやタスク記述に適したAIモデルを決定・生成するフレームワークであるModelGPTを提案する。
ユーザの要求に応じて、ModelGPTは、以前のパラダイムよりも少なくとも270倍高速に、調整済みのモデルを提供することができる。
- 参考スコア(独自算出の注目度): 35.160964210941955
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid advancement of Large Language Models (LLMs) has revolutionized
various sectors by automating routine tasks, marking a step toward the
realization of Artificial General Intelligence (AGI). However, they still
struggle to accommodate the diverse and specific needs of users and simplify
the utilization of AI models for the average user. In response, we propose
ModelGPT, a novel framework designed to determine and generate AI models
specifically tailored to the data or task descriptions provided by the user,
leveraging the capabilities of LLMs. Given user requirements, ModelGPT is able
to provide tailored models at most 270x faster than the previous paradigms
(e.g. all-parameter or LoRA finetuning). Comprehensive experiments on NLP, CV,
and Tabular datasets attest to the effectiveness of our framework in making AI
models more accessible and user-friendly. Our code is available at
https://github.com/IshiKura-a/ModelGPT.
- Abstract(参考訳): 大規模言語モデル(llm)の急速な進歩は、ルーチンタスクを自動化することで様々な分野に革命をもたらし、人工知能(agi)の実現に向けた一歩となった。
しかしながら、ユーザのニーズの多様さや、平均的なユーザに対するaiモデルの利用の簡素化にはまだ苦労している。
そこで本研究では,ユーザが提供するデータやタスク記述に合わせたaiモデルを,llmの機能を活用して決定・生成する新しいフレームワークであるmodelgptを提案する。
ユーザの要求に応じて、ModelGPTは以前のパラダイム(全パラメータやLoRAファインタニングなど)よりも少なくとも270倍高速なモデルを提供することができる。
NLP、CV、Tabularデータセットに関する包括的な実験は、AIモデルをよりアクセシブルでユーザフレンドリにするためのフレームワークの有効性を実証しています。
私たちのコードはhttps://github.com/IshiKura-a/ModelGPTで利用可能です。
関連論文リスト
- Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
大規模言語モデル(LLM)は、多種多様な高品質なタスク特化データのトレーニングの恩恵を受けている。
本稿では,効果的なトレーニングサンプルを自動生成する新しい手法であるReverseGenを提案する。
論文 参考訳(メタデータ) (2024-10-22T06:43:28Z) - Enabling Small Models for Zero-Shot Classification through Model Label Learning [50.68074833512999]
モデルと機能の間のギャップを埋める新しいパラダイムであるモデルラベル学習(MLL)を導入する。
7つの実世界のデータセットの実験により、MLLの有効性と効率が検証された。
論文 参考訳(メタデータ) (2024-08-21T09:08:26Z) - GLiNER multi-task: Generalist Lightweight Model for Various Information Extraction Tasks [0.0]
我々は,小さなエンコーダモデルであると同時に,様々な情報抽出タスクに使用できる新しい種類のGLiNERモデルを導入する。
我々のモデルは,ゼロショットNERベンチマークにおけるSoTA性能を達成し,質問応答,要約,関係抽出タスクにおける主要な性能を実現した。
論文 参考訳(メタデータ) (2024-06-14T13:54:29Z) - Model Callers for Transforming Predictive and Generative AI Applications [2.7195102129095003]
モデル呼び出し(model caller)と呼ばれる新しいソフトウェア抽象化を導入する。
モデル呼び出しは、AIとMLモデル呼び出しの仲介役として機能する。
我々は、モデル呼び出しのためのPythonライブラリのプロトタイプをリリースした。
論文 参考訳(メタデータ) (2024-04-17T12:21:06Z) - Data-efficient Large Vision Models through Sequential Autoregression [58.26179273091461]
限られたデータセットに基づいて,効率的な自己回帰に基づく視覚モデルを構築する。
このモデルは,高レベル・低レベルのセマンティック理解の両方にまたがる視覚的タスクにおいて,その習熟度をいかに達成するかを実証する。
我々の経験的評価は、モデルが様々なタスクに適応する際の機敏さを強調し、パラメータフットプリントの大幅な削減を図った。
論文 参考訳(メタデータ) (2024-02-07T13:41:53Z) - Herd: Using multiple, smaller LLMs to match the performances of proprietary, large LLMs via an intelligent composer [1.3108652488669732]
オープンソースモデルの群れは、インテリジェントルータを介して、プロプライエタリなモデルのパフォーマンスに適合または超えることができることを示す。
GPTがクエリに答えられない場合、Herdは少なくとも40%の確率でモデルを特定できる。
論文 参考訳(メタデータ) (2023-10-30T18:11:02Z) - Model Share AI: An Integrated Toolkit for Collaborative Machine Learning
Model Development, Provenance Tracking, and Deployment in Python [0.0]
モデル共有AI(AIMS)は、コラボレーティブモデル開発、モデル前駆者追跡、モデルデプロイメントを合理化するように設計された、使いやすいMLOpsプラットフォームである。
AIMSは、協調的なプロジェクト空間と、見当たらない評価データに基づいてモデル提出をランク付けする標準化されたモデル評価プロセスを備えている。
AIMSでは、Scikit-Learn、Keras、PyTorch、ONNXで構築されたMLモデルを、ライブREST APIや自動生成されたWebアプリにデプロイすることができる。
論文 参考訳(メタデータ) (2023-09-27T15:24:39Z) - AutoML-GPT: Automatic Machine Learning with GPT [74.30699827690596]
本稿では,タスク指向のプロンプトを開発し,大規模言語モデル(LLM)を自動的に活用して学習パイプラインを自動化することを提案する。
本稿では,多様なAIモデルのブリッジとしてGPTを用いたAutoML-GPTを提案する。
このアプローチはコンピュータビジョン、自然言語処理、その他の課題領域において顕著な結果をもたらす。
論文 参考訳(メタデータ) (2023-05-04T02:09:43Z) - eP-ALM: Efficient Perceptual Augmentation of Language Models [70.47962271121389]
本稿では,既存モデルの適応性を向上するための直接的な取り組みを提案し,認識を伴う言語モデルの拡張を提案する。
視覚言語タスクに事前訓練されたモデルを適用するための既存のアプローチは、その効率を妨げているいくつかの重要なコンポーネントに依存している。
総パラメータの99%以上を凍結し,1つの直線射影層のみをトレーニングし,1つのトレーニング可能なトークンのみを予測することにより,我々のアプローチ(eP-ALM)は,VQAとCaptioningの他のベースラインよりも有意に優れていることを示す。
論文 参考訳(メタデータ) (2023-03-20T19:20:34Z) - Re-parameterizing Your Optimizers rather than Architectures [119.08740698936633]
本稿では,モデル固有の事前知識を構造学に取り入れ,汎用モデル(簡易モデル)の学習に使用する新しいパラダイムを提案する。
実装として,モデル固有のハイパーパラメータの集合に従って勾配を変更することによって,事前知識を付加する手法を提案する。
Reprでトレーニングされた単純なモデルに対しては、VGGスタイルのプレーンモデルに注目し、ReprでトレーニングされたそのようなシンプルなモデルがRep-VGGと呼ばれ、最近のよく設計されたモデルと同等に動作することを示す。
論文 参考訳(メタデータ) (2022-05-30T16:55:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。