論文の概要: Realisation of a Coherent and Efficient One-Dimensional Atom
- arxiv url: http://arxiv.org/abs/2402.12568v3
- Date: Wed, 4 Sep 2024 12:17:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-07 03:42:07.595487
- Title: Realisation of a Coherent and Efficient One-Dimensional Atom
- Title(参考訳): コヒーレントで効率的な1次元原子の実現
- Authors: Natasha Tomm, Nadia O. Antoniadis, Marcelo Janovitch, Matteo Brunelli, Rüdiger Schott, Sascha R. Valentin, Andreas D. Wieck, Arne Ludwig, Patrick Potts, Alisa Javadi, Richard J. Warburton,
- Abstract要約: コヒーレントで効率的に結合された1次元原子は大きな非線形性を提供し、フォトニック量子ゲートを可能にする。
ここでは、1次元原子の実装として、オープンマイクロキャビティ内の半導体量子ドットを用いる。
この結果は、エキゾチックなフォトニック状態と2光子相ゲートの創出への道を開くものである。
- 参考スコア(独自算出の注目度): 0.15274583259797847
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A quantum emitter interacting with photons in a single optical-mode constitutes a one-dimensional atom. A coherent and efficiently coupled one-dimensional atom provides a large nonlinearity, enabling photonic quantum gates. Achieving a high coupling efficiency ($\beta$-factor) and low dephasing is challenging. Here, we use a semiconductor quantum dot in an open microcavity as an implementation of a one-dimensional atom. With a weak laser input, we achieve an extinction of $99.2\%$ in transmission and a concomitant bunching in the photon statistics of $g^{(2)}(0) = 587$, showcasing the reflection of the single-photon component and the transmission of the multi-photon components of the coherent input. The tunable nature of the microcavity allows $\beta$ to be adjusted and gives control over the photon statistics -- from strong bunching to anti-bunching -- and the phase of the transmitted photons. We obtain excellent agreement between experiment and theory by going beyond the single-mode Jaynes-Cummings model. Our results pave the way towards the creation of exotic photonic states and two-photon phase gates.
- Abstract(参考訳): 単一光学モードにおける光子と相互作用する量子エミッタは1次元原子を構成する。
コヒーレントで効率的に結合された1次元原子は大きな非線形性を提供し、フォトニック量子ゲートを可能にする。
高い結合効率($-factor)と低いデフォーカスを達成することは難しい。
ここでは、1次元原子の実装として、オープンマイクロキャビティ内の半導体量子ドットを用いる。
弱いレーザー入力により、送信における99.2\%$の消滅と、光子統計における$g^{(2)}(0) = 587$の混束を達成し、単一光子成分の反射とコヒーレント入力の多重光子成分の透過を示す。
マイクロキャビティのチューニング可能な性質により、$\beta$は調整でき、強い束縛から反膨らみまでの光子統計と送信された光子の位相を制御できる。
単一モードのJaynes-Cummingsモデルを超えることによって、実験と理論の間に優れた一致が得られる。
この結果は、エキゾチックなフォトニック状態と2光子相ゲートの創出への道を開くものである。
関連論文リスト
- Hybrid boson sampling [0.0]
多モード共振器内に置かれた結合光子とボース・アインシュタイン凝縮原子の系からのボソンサンプリングを提案する。
準平衡モデルにおいて原子と光子数の合同確率分布を求める。
キャビティQEDと量子ガス技術をハイブリッドボソンサンプリングに融合することで、分離された光子または原子の制限、サンプリングスキームを克服する可能性がある。
論文 参考訳(メタデータ) (2024-09-13T16:43:35Z) - All-optical modulation with single-photons using electron avalanche [69.65384453064829]
単光子強度ビームを用いた全光変調の実証を行った。
本稿では,テラヘルツ高速光スイッチングの可能性を明らかにする。
論文 参考訳(メタデータ) (2023-12-18T20:14:15Z) - Atomic diffraction from single-photon transitions in gravity and
Standard-Model extensions [49.26431084736478]
磁気誘起および直接誘起の両方の単一光子遷移を重力および標準モデル拡張において研究する。
我々は、質量欠陥によって引き起こされる内部から中心への自由度の結合のような相対論的効果を考慮に入れている。
論文 参考訳(メタデータ) (2023-09-05T08:51:42Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
量子情報の長距離伝送は、分散量子情報プロセッサの中心的な要素である。
トランスダクションへの現在のアプローチでは、電気ドメインと光ドメインの固体リンクが採用されている。
我々は、850ドルRbの低温原子をトランスデューサとして用いたミリ波光子の光子への量子制限変換を実証した。
論文 参考訳(メタデータ) (2022-07-20T18:04:26Z) - Quantum density matrix theory for a laser without adiabatic elimination
of the population inversion: transition to lasing in the class-B limit [62.997667081978825]
B級量子密度行列モデルは、統一理論におけるコヒーレンスと光子相関を正確に記述することができない。
ここでは、一般クラスBレーザーに対する密度行列の理論的アプローチを行い、光子のフォック基底におけるフォトニックおよび原子還元密度行列の閉方程式を提供する。
このモデルは、クラスBレーザーデバイスにおける数光子分岐と非古典光子相関の研究を可能にし、コヒーレント結合ナノレーザーアレイの量子記述を活用する。
論文 参考訳(メタデータ) (2022-05-26T16:33:51Z) - Improved heralded single-photon source with a photon-number-resolving
superconducting nanowire detector [0.0]
超伝導ナノワイヤ検出器を用いて、単一の光子を通信波長で固定する。
我々は、すべての多重光子効果と関連する不完全性を含む位相空間形式を用いた解析モデルを開発する。
繊維結合およびオフザシェルフ部品を用いて構築した本実験は, 単一光子の理想的な光源を構築するための道筋を示す。
論文 参考訳(メタデータ) (2021-12-21T18:48:34Z) - A chiral one-dimensional atom using a quantum dot in an open microcavity [0.45507178426690204]
ナノ構造では、光-物質相互作用はキラルとなるように設計することができる。
キラル量子光学はナノスコピック単一光子ルータ、サーキュレータ、位相シフト器および2光子ゲートの作成に応用されている。
論文 参考訳(メタデータ) (2021-10-06T10:59:33Z) - Quantum Interference of Identical Photons from Remote GaAs Quantum Dots [0.45507178426690204]
光量子技術は、量子通信、量子シミュレーション、および量子情報処理への有効な経路を提供する。
近年の進歩では、20個の単一光子と数百kmの量子鍵分布を用いたボソンサンプリングが実現されている。
アプリケーションにとって重要な障害は、独立量子ドットによって生成された単一の光子を干渉する際の量子コヒーレンスが悪いことである。
ここでは、完全に分離されたGaAs量子ドットの光子を用いて、近ユニティ可視性(93.0pm0.8$)%の2光子干渉を示す。
論文 参考訳(メタデータ) (2021-06-07T18:00:03Z) - A bright and fast source of coherent single photons [46.25143811066789]
単一光子源はデバイス非依存の量子通信において重要な技術である。
特に高効率な単一光子源について報告する。
論文 参考訳(メタデータ) (2020-07-24T17:08:46Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
集積フォトニクスは量子情報処理のための堅牢なプラットフォームである。
非常に区別がつかず純粋な単一の光子の源は、ほぼ決定的か高い効率で隠蔽されている。
ここでは、これらの要件を同時に満たすオンチップ光子源を実証する。
論文 参考訳(メタデータ) (2020-05-19T16:46:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。