Graph-based Virtual Sensing from Sparse and Partial Multivariate
Observations
- URL: http://arxiv.org/abs/2402.12598v1
- Date: Mon, 19 Feb 2024 23:22:30 GMT
- Title: Graph-based Virtual Sensing from Sparse and Partial Multivariate
Observations
- Authors: Giovanni De Felice, Andrea Cini, Daniele Zambon, Vladimir V. Gusev,
Cesare Alippi
- Abstract summary: We introduce a novel graph-based methodology to exploit such relationships and design a graph deep learning architecture, named GgNet, implementing the framework.
The proposed approach relies on propagating information over a nested graph structure that is used to learn dependencies between variables as well as locations.
GgNet is extensively evaluated under different virtual sensing scenarios, demonstrating higher reconstruction accuracy compared to the state-of-the-art.
- Score: 22.567497617912046
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Virtual sensing techniques allow for inferring signals at new unmonitored
locations by exploiting spatio-temporal measurements coming from physical
sensors at different locations. However, as the sensor coverage becomes sparse
due to costs or other constraints, physical proximity cannot be used to support
interpolation. In this paper, we overcome this challenge by leveraging
dependencies between the target variable and a set of correlated variables
(covariates) that can frequently be associated with each location of interest.
From this viewpoint, covariates provide partial observability, and the problem
consists of inferring values for unobserved channels by exploiting observations
at other locations to learn how such variables can correlate. We introduce a
novel graph-based methodology to exploit such relationships and design a graph
deep learning architecture, named GgNet, implementing the framework. The
proposed approach relies on propagating information over a nested graph
structure that is used to learn dependencies between variables as well as
locations. GgNet is extensively evaluated under different virtual sensing
scenarios, demonstrating higher reconstruction accuracy compared to the
state-of-the-art.
Related papers
- A Self-Organizing Clustering System for Unsupervised Distribution Shift Detection [1.0436203990235575]
We propose a continual learning framework for monitoring and detecting distribution changes.
In particular, we investigate the projections made by two topology-preserving maps: the Self-Organizing Map and the Scale Invariant Map.
Our method can be applied in both a supervised and an unsupervised context.
arXiv Detail & Related papers (2024-04-25T14:48:29Z) - GLAD: Content-aware Dynamic Graphs For Log Anomaly Detection [49.9884374409624]
GLAD is a Graph-based Log Anomaly Detection framework designed to detect anomalies in system logs.
We introduce GLAD, a Graph-based Log Anomaly Detection framework designed to detect anomalies in system logs.
arXiv Detail & Related papers (2023-09-12T04:21:30Z) - INCREASE: Inductive Graph Representation Learning for Spatio-Temporal
Kriging [35.193756288996944]
SRU-temporal kriging is an important problem in web and social applications, such as Web or Internet of Things, where things (e.g., sensors) connected into a web often come with spatial and temporal properties.
We propose a novel inductive graph representation learning model for kriging.
arXiv Detail & Related papers (2023-02-06T12:28:35Z) - HFN: Heterogeneous Feature Network for Multivariate Time Series Anomaly
Detection [2.253268952202213]
We propose a novel semi-supervised anomaly detection framework based on a heterogeneous feature network (HFN) for MTS.
We first combine the embedding similarity subgraph generated by sensor embedding and feature value similarity subgraph generated by sensor values to construct a time-series heterogeneous graph.
This approach fuses the state-of-the-art technologies of heterogeneous graph structure learning (HGSL) and representation learning.
arXiv Detail & Related papers (2022-11-01T05:01:34Z) - Adaptive Local-Component-aware Graph Convolutional Network for One-shot
Skeleton-based Action Recognition [54.23513799338309]
We present an Adaptive Local-Component-aware Graph Convolutional Network for skeleton-based action recognition.
Our method provides a stronger representation than the global embedding and helps our model reach state-of-the-art.
arXiv Detail & Related papers (2022-09-21T02:33:07Z) - Robust Change Detection Based on Neural Descriptor Fields [53.111397800478294]
We develop an object-level online change detection approach that is robust to partially overlapping observations and noisy localization results.
By associating objects via shape code similarity and comparing local object-neighbor spatial layout, our proposed approach demonstrates robustness to low observation overlap and localization noises.
arXiv Detail & Related papers (2022-08-01T17:45:36Z) - Learning-based Localizability Estimation for Robust LiDAR Localization [13.298113481670038]
LiDAR-based localization and mapping is one of the core components in many modern robotic systems.
This work proposes a neural network-based estimation approach for detecting (non-)localizability during robot operation.
arXiv Detail & Related papers (2022-03-11T01:12:00Z) - Gromov-Wasserstein Discrepancy with Local Differential Privacy for
Distributed Structural Graphs [7.4398547397969494]
We propose a privacy-preserving framework to analyze the GW discrepancy of node embedding learned locally from graph neural networks.
Our experiments show that, with strong privacy protections guaranteed by the $varilon$-LDP algorithm, the proposed framework not only preserves privacy in graph learning but also presents a noised structural metric under GW distance.
arXiv Detail & Related papers (2022-02-01T23:32:33Z) - Unsupervised Metric Relocalization Using Transform Consistency Loss [66.19479868638925]
Training networks to perform metric relocalization traditionally requires accurate image correspondences.
We propose a self-supervised solution, which exploits a key insight: localizing a query image within a map should yield the same absolute pose, regardless of the reference image used for registration.
We evaluate our framework on synthetic and real-world data, showing our approach outperforms other supervised methods when a limited amount of ground-truth information is available.
arXiv Detail & Related papers (2020-11-01T19:24:27Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
We propose a general graph neural network framework designed specifically for multivariate time series data.
Our approach automatically extracts the uni-directed relations among variables through a graph learning module.
Our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets.
arXiv Detail & Related papers (2020-05-24T04:02:18Z) - Scope Head for Accurate Localization in Object Detection [135.9979405835606]
We propose a novel detector coined as ScopeNet, which models anchors of each location as a mutually dependent relationship.
With our concise and effective design, the proposed ScopeNet achieves state-of-the-art results on COCO.
arXiv Detail & Related papers (2020-05-11T04:00:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.