論文の概要: FinBen: A Holistic Financial Benchmark for Large Language Models
- arxiv url: http://arxiv.org/abs/2402.12659v2
- Date: Wed, 19 Jun 2024 03:38:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-22 05:19:10.121794
- Title: FinBen: A Holistic Financial Benchmark for Large Language Models
- Title(参考訳): FinBen: 大規模言語モデルのためのホロスティックなファイナンシャルベンチマーク
- Authors: Qianqian Xie, Weiguang Han, Zhengyu Chen, Ruoyu Xiang, Xiao Zhang, Yueru He, Mengxi Xiao, Dong Li, Yongfu Dai, Duanyu Feng, Yijing Xu, Haoqiang Kang, Ziyan Kuang, Chenhan Yuan, Kailai Yang, Zheheng Luo, Tianlin Zhang, Zhiwei Liu, Guojun Xiong, Zhiyang Deng, Yuechen Jiang, Zhiyuan Yao, Haohang Li, Yangyang Yu, Gang Hu, Jiajia Huang, Xiao-Yang Liu, Alejandro Lopez-Lira, Benyou Wang, Yanzhao Lai, Hao Wang, Min Peng, Sophia Ananiadou, Jimin Huang,
- Abstract要約: FinBenは、24の財務タスクにまたがる36のデータセットを含む、最初の大規模なオープンソース評価ベンチマークである。
FinBenは、幅広いタスクとデータセット、ストックトレーディングの最初の評価、新しいエージェントと検索可能な生成(RAG)の評価、およびテキスト要約、質問応答、株式トレーディングのための3つの新しいオープンソース評価データセットを提供する。
- 参考スコア(独自算出の注目度): 75.09474986283394
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: LLMs have transformed NLP and shown promise in various fields, yet their potential in finance is underexplored due to a lack of comprehensive evaluation benchmarks, the rapid development of LLMs, and the complexity of financial tasks. In this paper, we introduce FinBen, the first extensive open-source evaluation benchmark, including 36 datasets spanning 24 financial tasks, covering seven critical aspects: information extraction (IE), textual analysis, question answering (QA), text generation, risk management, forecasting, and decision-making. FinBen offers several key innovations: a broader range of tasks and datasets, the first evaluation of stock trading, novel agent and Retrieval-Augmented Generation (RAG) evaluation, and three novel open-source evaluation datasets for text summarization, question answering, and stock trading. Our evaluation of 15 representative LLMs, including GPT-4, ChatGPT, and the latest Gemini, reveals several key findings: While LLMs excel in IE and textual analysis, they struggle with advanced reasoning and complex tasks like text generation and forecasting. GPT-4 excels in IE and stock trading, while Gemini is better at text generation and forecasting. Instruction-tuned LLMs improve textual analysis but offer limited benefits for complex tasks such as QA. FinBen has been used to host the first financial LLMs shared task at the FinNLP-AgentScen workshop during IJCAI-2024, attracting 12 teams. Their novel solutions outperformed GPT-4, showcasing FinBen's potential to drive innovation in financial LLMs. All datasets, results, and codes are released for the research community: https://github.com/The-FinAI/PIXIU.
- Abstract(参考訳): LLM は NLP を転換し,様々な分野での有望性を示したが,総合的な評価ベンチマークの欠如,LCM の急速な開発,財務タスクの複雑さなど,財務面でのポテンシャルは過小評価されている。
本稿では、24の財務タスクにまたがる36のデータセットを含む、最初の大規模なオープンソース評価ベンチマークであるFinBenを紹介し、情報抽出(IE)、テキスト分析、質問応答(QA)、テキスト生成、リスク管理、予測、意思決定の7つの重要な側面をカバーする。
FinBenは、幅広いタスクとデータセット、ストックトレーディングの最初の評価、新しいエージェントと検索可能な生成(RAG)の評価、およびテキスト要約、質問応答、株式トレーディングのための3つの新しいオープンソース評価データセットを提供する。
GPT-4、ChatGPT、そして最新のGeminiを含む15の代表的なLCMの評価では、いくつかの重要な発見が示されている: LLMはIEとテキスト解析に優れていますが、高度な推論やテキスト生成や予測といった複雑なタスクに苦戦しています。
GPT-4はIEと株取引で優れており、Geminiはテキスト生成と予測が優れている。
命令調整 LLM はテキスト解析を改善するが、QA のような複雑なタスクには限定的な利点がある。
FinBenは、IJCAI-2024のFinNLP-AgentScenワークショップで、最初の財務的なLLM共有タスクの開催に使用されており、12チームが参加している。
彼らの新しいソリューションはGPT-4よりも優れており、フィンベンが金融LLMのイノベーションを推進している可能性を示している。
すべてのデータセット、結果、コードは研究コミュニティのためにリリースされている。
関連論文リスト
- CFinBench: A Comprehensive Chinese Financial Benchmark for Large Language Models [61.324062412648075]
CFinBenchは、中国の文脈下での大規模言語モデル(LLM)の財務知識を評価するための評価ベンチマークである。
この質問は、43の第二級カテゴリーにまたがる99,100の質問で構成されており、3つの質問タイプがある: シングルチョイス、マルチチョイス、そして判断である。
結果は、GPT4といくつかの中国指向モデルがベンチマークをリードし、平均精度は60.16%であることを示している。
論文 参考訳(メタデータ) (2024-07-02T14:34:36Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
我々はAlphaFinデータセットをリリースし、従来の研究データセット、リアルタイム財務データ、手書きのチェーン・オブ・プリート(CoT)データを組み合わせています。
次に、AlphaFinデータセットを使用して、金融分析タスクを効果的に処理するために、Stock-Chainと呼ばれる最先端の手法をベンチマークします。
論文 参考訳(メタデータ) (2024-03-19T09:45:33Z) - A Survey of Large Language Models in Finance (FinLLMs) [10.195778659105626]
大規模言語モデル(LLM)は、さまざまな自然言語処理(NLP)タスクで顕著な機能を示している。
この調査は、FinLLMの歴史、テクニック、パフォーマンス、機会と課題を含む、包括的な概要を提供する。
ファイナンスにおけるAI研究を支援するために、アクセス可能なデータセットと評価ベンチマークのコレクションをGitHubにコンパイルします。
論文 参考訳(メタデータ) (2024-02-04T02:06:57Z) - Revolutionizing Finance with LLMs: An Overview of Applications and
Insights [47.11391223936608]
ChatGPTのような大規模言語モデル(LLM)はかなり進歩しており、様々な分野に適用されている。
これらのモデルは、財務報告の自動生成、市場のトレンド予測、投資家の感情分析、パーソナライズされた財務アドバイスの提供に利用されています。
論文 参考訳(メタデータ) (2024-01-22T01:06:17Z) - FinEval: A Chinese Financial Domain Knowledge Evaluation Benchmark for
Large Language Models [25.137098233579255]
FinEvalは、大規模言語モデル(LLM)における金融ドメイン知識のベンチマークである。
FinEvalには、ゼロショットプロンプトや少数ショットプロンプトなど、さまざまなプロンプトタイプが採用されている。
その結果, GPT-4の精度は, 異なるプロンプト設定で70%に近かった。
論文 参考訳(メタデータ) (2023-08-19T10:38:00Z) - FinGPT: Democratizing Internet-scale Data for Financial Large Language
Models [35.83244096535722]
大型言語モデル (LLM) は、人間に似たテキストの理解と生成に顕著な熟練性を示した。
ファイナンシャル・ジェネレーティブ・プレトレーニング・トランスフォーマー(FinGPT)は、インターネット上の34の多様なソースからリアルタイムの財務データの収集とキュレーションを自動化する。
FinGPTは、FinLLMを民主化し、イノベーションを刺激し、オープンファイナンスにおける新たな機会を開放することを目指している。
論文 参考訳(メタデータ) (2023-07-19T22:43:57Z) - PIXIU: A Large Language Model, Instruction Data and Evaluation Benchmark
for Finance [63.51545277822702]
PIXIUは、命令データ付き微調整LLaMAに基づく最初の金融大規模言語モデル(LLM)を含む包括的なフレームワークである。
我々はLLaMAを細調整してFinMAを提案する。
我々は、FinMAと既存のLLMを詳細に分析し、重要な財政課題に対処する際の長所と短所を明らかにする。
論文 参考訳(メタデータ) (2023-06-08T14:20:29Z) - FinQA: A Dataset of Numerical Reasoning over Financial Data [52.7249610894623]
我々は、大量の財務文書の分析を自動化することを目的として、財務データに関する深い質問に答えることに重点を置いている。
我々は,金融専門家が作成した財務報告に対して質問回答のペアを用いた,新たな大規模データセットFinQAを提案する。
その結果、人気があり、大規模で、事前訓練されたモデルは、金融知識を得るための専門的な人間には程遠いことが示される。
論文 参考訳(メタデータ) (2021-09-01T00:08:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。