論文の概要: TorchCP: A Python Library for Conformal Prediction
- arxiv url: http://arxiv.org/abs/2402.12683v2
- Date: Thu, 12 Dec 2024 05:19:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 17:01:39.583757
- Title: TorchCP: A Python Library for Conformal Prediction
- Title(参考訳): TorchCP: コンフォーマルな予測のためのPythonライブラリ
- Authors: Jianguo Huang, Jianqing Song, Xuanning Zhou, Bingyi Jing, Hongxin Wei,
- Abstract要約: コンフォーマル予測のユーザビリティを高めるため,PyTorchベースの総合ツールキットである torchcp を紹介する。
torchcpは、さまざまな機械学習タスクに対して、多種多様なポストホックと整合予測のトレーニング方法を実装している。
我々のTorchcpツールキットはPyTorchで構築されており、ディープラーニングモデルのための高速GPUアクセラレーションと大規模データセットでのミニバッチ計算を可能にします。
- 参考スコア(独自算出の注目度): 7.1967126772249586
- License:
- Abstract: Conformal Prediction (CP) has attracted great attention from the research community due to its strict theoretical guarantees. However, researchers and developers still face challenges of applicability and efficiency when applying CP algorithms to deep learning models. In this paper, we introduce \torchcp, a comprehensive PyTorch-based toolkit to strengthen the usability of CP for deep learning models. \torchcp implements a wide range of post-hoc and training methods of conformal prediction for various machine learning tasks, including classification, regression, GNN, and LLM. Moreover, we provide user-friendly interfaces and extensive evaluations to easily integrate CP algorithms into specific tasks. Our \torchcp toolkit, built entirely with PyTorch, enables high-performance GPU acceleration for deep learning models and mini-batch computation on large-scale datasets. With the LGPL license, the code is open-sourced at \url{https://github.com/ml-stat-Sustech/TorchCP} and will be continuously updated.
- Abstract(参考訳): コンフォーマル予測(CP)は、厳密な理論的保証のため、研究コミュニティから大きな注目を集めている。
しかし、研究者や開発者は、ディープラーニングモデルにCPアルゴリズムを適用する際に、適用性と効率性の課題に直面している。
本稿では,PyTorch ベースの総合ツールキットである \torchcp について紹介する。
\torchcpは、分類、回帰、GNN、LLMなど、さまざまな機械学習タスクに対して、幅広いポストホックと共形予測の訓練方法を実装している。
さらに,CPアルゴリズムを特定のタスクに容易に組み込むためのユーザフレンドリなインタフェースと広範囲な評価を提供する。
我々のTatorchcpツールキットは、完全にPyTorchで構築されており、ディープラーニングモデルのための高性能GPUアクセラレーションと大規模データセットでのミニバッチ計算を可能にします。
LGPLライセンスにより、コードは \url{https://github.com/ml-stat-Sustech/TorchCP} でオープンソース化され、継続的に更新される。
関連論文リスト
- TorchQC -- A framework for efficiently integrating machine and deep learning methods in quantum dynamics and control [0.0]
TorchQCはPythonで完全に書かれた新しいライブラリで、PyTorchディープラーニングライブラリをベースとしている。
PyTorchとそのテンソル機構を利用して量子状態と演算子をテンソルとして表現し、量子系の力学をシミュレートするために必要なすべてのツールも組み込んでいる。
論文 参考訳(メタデータ) (2024-12-19T07:19:55Z) - sQUlearn -- A Python Library for Quantum Machine Learning [0.0]
sQUlearnが量子機械学習(QML)用のNISQ対応Pythonライブラリを導入
図書館の二重層アーキテクチャはQML研究者と実践者の両方に役立っている。
論文 参考訳(メタデータ) (2023-11-15T14:22:53Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [65.57123249246358]
本稿では,PILOTとして知られるモデルベース連続学習ツールボックスについて紹介する。
一方、PILOTはL2P、DualPrompt、CODA-Promptといった事前学習モデルに基づいて、最先端のクラスインクリメンタル学習アルゴリズムを実装している。
一方、PILOTは、事前学習されたモデルの文脈に典型的なクラス増分学習アルゴリズムを適合させ、それらの効果を評価する。
論文 参考訳(メタデータ) (2023-09-13T17:55:11Z) - Provably Efficient Representation Learning with Tractable Planning in
Low-Rank POMDP [81.00800920928621]
部分的に観測可能なマルコフ決定過程(POMDP)における表現学習の研究
まず,不確実性(OFU)に直面した最大推定(MLE)と楽観性を組み合わせた復調性POMDPのアルゴリズムを提案する。
次に、このアルゴリズムをより広範な$gamma$-observable POMDPのクラスで機能させる方法を示す。
論文 参考訳(メタデータ) (2023-06-21T16:04:03Z) - PyPOTS: A Python Toolbox for Data Mining on Partially-Observed Time
Series [0.0]
PyPOTSは、部分的に保存された時系列のデータマイニングと分析に特化した、オープンソースのPythonライブラリである。
これは、計算、分類、クラスタリング、予測の4つのタスクに分類される多様なアルゴリズムに容易にアクセスできる。
論文 参考訳(メタデータ) (2023-05-30T07:57:05Z) - Partitioning Distributed Compute Jobs with Reinforcement Learning and
Graph Neural Networks [58.720142291102135]
大規模な機械学習モデルは、幅広い分野に進歩をもたらしている。
これらのモデルの多くは、単一のマシンでトレーニングするには大きすぎるため、複数のデバイスに分散する必要がある。
スループットやブロッキングレートといったユーザクリティカルな指標に対して,並列化の最大化が準最適であることを示す。
論文 参考訳(メタデータ) (2023-01-31T17:41:07Z) - Latte: Cross-framework Python Package for Evaluation of Latent-Based
Generative Models [65.51757376525798]
Latteは、潜伏型生成モデルを評価するためのPythonライブラリである。
LatteはPyTorchと/Kerasの両方と互換性があり、関数型APIとモジュール型APIの両方を提供する。
論文 参考訳(メタデータ) (2021-12-20T16:00:28Z) - CREPO: An Open Repository to Benchmark Credal Network Algorithms [78.79752265884109]
クレダルネットワークは、確率質量関数の集合であるクレダルに基づく不正確な確率的グラフィカルモデルである。
CREMAと呼ばれるJavaライブラリが最近リリースされ、クレダルネットワークをモデル化し、処理し、クエリする。
我々は,これらのモデル上での推論タスクの正確な結果とともに,合成クレダルネットワークのオープンリポジトリであるcrrepoを提案する。
論文 参考訳(メタデータ) (2021-05-10T07:31:59Z) - OpTorch: Optimized deep learning architectures for resource limited
environments [1.5736899098702972]
時間や記憶など多面的に最適化された深層学習パイプラインを提案します。
OpTorchは、ニューラルネットワークトレーニングの既存の実装の弱点を克服するために設計された機械学習ライブラリである。
論文 参考訳(メタデータ) (2021-05-03T03:58:57Z) - PyLightcurve-torch: a transit modelling package for deep learning
applications in PyTorch [0.0]
我々はPyLightcurveとPyTorchをベースにした新しいオープンソースpythonパッケージを提案する。
効率的な計算と外惑星トランジットの自動分化のために調整されている。
論文 参考訳(メタデータ) (2020-11-03T22:05:41Z) - MOGPTK: The Multi-Output Gaussian Process Toolkit [71.08576457371433]
ガウス過程(GP)を用いたマルチチャネルデータモデリングのためのPythonパッケージMOGPTKを提案する。
このツールキットの目的は、研究者、データサイエンティスト、実践者にもMOGP(multi-output GP)モデルを利用できるようにすることである。
論文 参考訳(メタデータ) (2020-02-09T23:34:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。