UMBCLU at SemEval-2024 Task 1A and 1C: Semantic Textual Relatedness with and without machine translation
- URL: http://arxiv.org/abs/2402.12730v2
- Date: Fri, 12 Apr 2024 00:53:29 GMT
- Title: UMBCLU at SemEval-2024 Task 1A and 1C: Semantic Textual Relatedness with and without machine translation
- Authors: Shubhashis Roy Dipta, Sai Vallurupalli,
- Abstract summary: The aim of SemEval-2024 Task 1 is to develop models for identifying semantic textual relatedness between two sentences.
We develop two STR models, $textitTranSem$ and $textitFineSem$, for the supervised and cross-lingual settings.
- Score: 0.09208007322096534
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The aim of SemEval-2024 Task 1, "Semantic Textual Relatedness for African and Asian Languages" is to develop models for identifying semantic textual relatedness (STR) between two sentences using multiple languages (14 African and Asian languages) and settings (supervised, unsupervised, and cross-lingual). Large language models (LLMs) have shown impressive performance on several natural language understanding tasks such as multilingual machine translation (MMT), semantic similarity (STS), and encoding sentence embeddings. Using a combination of LLMs that perform well on these tasks, we developed two STR models, $\textit{TranSem}$ and $\textit{FineSem}$, for the supervised and cross-lingual settings. We explore the effectiveness of several training methods and the usefulness of machine translation. We find that direct fine-tuning on the task is comparable to using sentence embeddings and translating to English leads to better performance for some languages. In the supervised setting, our model performance is better than the official baseline for 3 languages with the remaining 4 performing on par. In the cross-lingual setting, our model performance is better than the baseline for 3 languages (leading to $1^{st}$ place for Africaans and $2^{nd}$ place for Indonesian), is on par for 2 languages and performs poorly on the remaining 7 languages. Our code is publicly available at https://github.com/dipta007/SemEval24-Task8.
Related papers
- Breaking the Script Barrier in Multilingual Pre-Trained Language Models with Transliteration-Based Post-Training Alignment [50.27950279695363]
The transfer performance is often hindered when a low-resource target language is written in a different script than the high-resource source language.
Inspired by recent work that uses transliteration to address this problem, our paper proposes a transliteration-based post-pretraining alignment (PPA) method.
arXiv Detail & Related papers (2024-06-28T08:59:24Z) - How do Large Language Models Handle Multilingualism? [81.15060972112563]
This study explores how large language models (LLMs) handle multilingualism.
LLMs initially understand the query, converting multilingual inputs into English for task-solving.
In the intermediate layers, they employ English for thinking and incorporate multilingual knowledge with self-attention and feed-forward structures.
arXiv Detail & Related papers (2024-02-29T02:55:26Z) - LAMPAT: Low-Rank Adaption for Multilingual Paraphrasing Using Adversarial Training [19.173992333194683]
Paraphrases are texts that convey the same meaning while using different words or sentence structures.
Previous studies have leveraged the knowledge from the machine translation field, forming a paraphrase through zero-shot machine translation in the same language.
We propose the first unsupervised multilingual paraphrasing model, LAMPAT, by which monolingual dataset is sufficient enough to generate a human-like and diverse sentence.
arXiv Detail & Related papers (2024-01-09T04:19:16Z) - TaCo: Enhancing Cross-Lingual Transfer for Low-Resource Languages in LLMs through Translation-Assisted Chain-of-Thought Processes [9.254047358707014]
We introduce the Multilingual Instruction-Tuning dataset (MITS), comprised of Alpaca-52K, Dolly-15K, and Vicuna Benchmark translations into 132 languages.
Secondly, we propose a new method called emphTaCo: Translation-Assisted Cross-Linguality, which utilizes translations in a chain-of-thought process to instruction-tune LLMs on new languages through a curriculum-learning process.
Our results indicate that the TaCo method impresses GPT-4 with an 82% score for a low-resource language in the Vicuna Benchmark dataset, doubling the performance in contrast to instruction tuning
arXiv Detail & Related papers (2023-11-17T06:55:32Z) - Breaking Language Barriers in Multilingual Mathematical Reasoning: Insights and Observations [59.056367787688146]
This paper pioneers exploring and training powerful Multilingual Math Reasoning (xMR) LLMs.
We construct the first multilingual math reasoning instruction dataset, MGSM8KInstruct, encompassing ten distinct languages.
By utilizing translation, we construct the first multilingual math reasoning instruction dataset, MGSM8KInstruct, encompassing ten distinct languages.
arXiv Detail & Related papers (2023-10-31T08:09:20Z) - Efficiently Aligned Cross-Lingual Transfer Learning for Conversational
Tasks using Prompt-Tuning [98.60739735409243]
Cross-lingual transfer of language models trained on high-resource languages like English has been widely studied for many NLP tasks.
We introduce XSGD for cross-lingual alignment pretraining, a parallel and large-scale multilingual conversation dataset.
To facilitate aligned cross-lingual representations, we develop an efficient prompt-tuning-based method for learning alignment prompts.
arXiv Detail & Related papers (2023-04-03T18:46:01Z) - Language-Aware Multilingual Machine Translation with Self-Supervised
Learning [13.250011906361273]
Multilingual machine translation (MMT) benefits from cross-lingual transfer but is a challenging multitask optimization problem.
Self-supervised learning approaches have shown promise by improving translation performance as complementary tasks to the MMT task.
We propose a novel but simple SSL task, concurrent denoising, that co-trains with the MMT task by concurrently denoising monolingual data on both the encoder and decoder.
arXiv Detail & Related papers (2023-02-10T01:34:24Z) - LVP-M3: Language-aware Visual Prompt for Multilingual Multimodal Machine
Translation [94.33019040320507]
Multimodal Machine Translation (MMT) focuses on enhancing text-only translation with visual features.
Recent advances still struggle to train a separate model for each language pair, which is costly and unaffordable when the number of languages increases.
We propose the Multilingual MMT task by establishing two new Multilingual MMT benchmark datasets covering seven languages.
arXiv Detail & Related papers (2022-10-19T12:21:39Z) - Learning to Scale Multilingual Representations for Vision-Language Tasks [51.27839182889422]
The effectiveness of SMALR is demonstrated with ten diverse languages, over twice the number supported in vision-language tasks to date.
We evaluate on multilingual image-sentence retrieval and outperform prior work by 3-4% with less than 1/5th the training parameters compared to other word embedding methods.
arXiv Detail & Related papers (2020-04-09T01:03:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.