論文の概要: SymBa: Symbolic Backward Chaining for Structured Natural Language Reasoning
- arxiv url: http://arxiv.org/abs/2402.12806v2
- Date: Fri, 2 Aug 2024 04:18:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-05 18:23:26.706172
- Title: SymBa: Symbolic Backward Chaining for Structured Natural Language Reasoning
- Title(参考訳): SymBa: 構造化自然言語推論のためのシンボリック・バックワード・チェイン
- Authors: Jinu Lee, Wonseok Hwang,
- Abstract要約: 本稿では,新しい後方鎖型フレームワーク,Symbic Backward Chainingを提案する。
SymBAでは、シンボリック・ソルバが証明プロセス全体を制御し、LLMは関連する自然言語の前提を検索し、それらをシンボリック・フォームに変換する。
このLCM-ソルバ統合により、Symbaは、ベースラインと比較して様々な構造化推論ベンチマークにおいて、性能、検証精度、効率が大幅に向上する。
- 参考スコア(独自算出の注目度): 5.893124686141782
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: While Large Language Models (LLMs) have demonstrated remarkable reasoning ability, providing a structured, explainable proof to ensure explainability, i.e. structured reasoning, still remains challenging. Among two directions of structured reasoning, we specifically focus on backward chaining, where the query is recursively decomposed to subgoals by applying inference rules. We point out that current popular backward chaining implementations (Least-to-most prompting and LAMBADA) fail to implement the necessary features of backward chaining, such as arbitrary-depth recursion and binding propagation. To this end, we propose a novel backward chaining framework, SymBa (Symbolic Backward Chaining). In SymBA, a symbolic solver controls the whole proof process, and an LLM searches for the relevant natural language premises and translates them into a symbolic form for the solver. By this LLM-solver integration, while producing a completely structured proof that is symbolically verified, SymBa achieves significant improvement in performance, proof accuracy, and efficiency in diverse structured reasoning benchmarks compared to baselines.
- Abstract(参考訳): 大規模言語モデル(LLM)は目覚ましい推論能力を示しており、説明可能性を保証するための構造化された説明可能な証明を提供する。
構造化推論の2つの方向のうち、特に後方連鎖に着目し、クエリは推論規則を適用して再帰的にサブゴールに分解される。
現在普及している後方連鎖実装 (Least-to-most prompting と LAMBADA) は、任意の深度再帰やバインディングの伝搬といった、後方連鎖に必要な機能を実装していないことを指摘する。
そこで本研究では,Symblic Backward Chaining (Symbolic Backward Chaining) という,新しい後方チェーンフレームワークを提案する。
SymBAでは、シンボリック・ソルバが証明プロセス全体を制御し、LLMは関連する自然言語の前提を検索し、それらをシンボリック・フォームに変換する。
このLCM-ソルバ統合により、記号的に検証された完全に構造化された証明を生成する一方で、Symbaは、ベースラインと比較して様々な構造化された推論ベンチマークにおいて、性能、検証精度、効率を大幅に向上させる。
関連論文リスト
- Make LLMs better zero-shot reasoners: Structure-orientated autonomous reasoning [52.83539473110143]
本稿では,Large Language Models (LLM) の質問をよりよく理解するための構造指向分析手法を提案する。
複雑な質問応答タスクの信頼性をさらに向上するために,多エージェント推論システム,構造指向自律推論エージェント(SARA)を提案する。
大規模な実験により,提案システムの有効性が検証された。
論文 参考訳(メタデータ) (2024-10-18T05:30:33Z) - Divide and Translate: Compositional First-Order Logic Translation and Verification for Complex Logical Reasoning [28.111458981621105]
複雑な論理的推論タスクは、長い推論を必要とするが、それは、チェーン・オブ・シークレットのプロンプトを持つ大きな言語モデル(LLM)が依然として不足している。
本稿では,翻訳中に自然言語に隠された論理的意味を抽出する合成一階論理翻訳を提案する。
提案手法は,CLOVERと呼ばれる7つの論理的推論ベンチマークを用いて評価し,従来のニューロシンボリックアプローチよりも優れていたことを示す。
論文 参考訳(メタデータ) (2024-10-10T15:42:39Z) - Faithful Logical Reasoning via Symbolic Chain-of-Thought [39.94884827166363]
シンボリック表現と論理規則をChain-of-Thoughtプロンプトと統合するフレームワークであるSymbCoTを提案する。
我々は、SymbCoTがCoT法よりも大幅に改善されていることを示す。
これは、論理的推論のために記号表現と規則をCoTに結合する最初の方法である。
論文 参考訳(メタデータ) (2024-05-28T16:55:33Z) - Neuro-Symbolic Integration Brings Causal and Reliable Reasoning Proofs [95.07757789781213]
LLMの複雑な推論には2行のアプローチが採用されている。
1行の作業は様々な推論構造を持つLLMを誘導し、構造出力は自然に中間推論ステップと見なすことができる。
他方の行では、LCMのない宣言的解法を用いて推論処理を行い、推論精度は向上するが、解法のブラックボックスの性質により解釈性に欠ける。
具体的には,Prologインタプリタが生成した中間検索ログにアクセスし,人間可読推論に解釈可能であることを示す。
論文 参考訳(メタデータ) (2023-11-16T11:26:21Z) - Are LLMs Rigorous Logical Reasoner? Empowering Natural Language Proof
Generation with Contrastive Stepwise Decoding [11.385103498440932]
本稿では,論理的推論のためのモデルの能力を高めるために,負の推論経路を用いることにより,ステップワイズな証明生成に対照的な復号を導入する。
EntailmentBankの実験は、言語モデルの計画能力を実証する上で、我々の手法の成功を裏付けている。
論文 参考訳(メタデータ) (2023-11-12T05:12:49Z) - LINC: A Neurosymbolic Approach for Logical Reasoning by Combining
Language Models with First-Order Logic Provers [60.009969929857704]
論理的推論は、科学、数学、社会に潜在的影響を与える可能性のある人工知能にとって重要なタスクである。
本研究では、LINCと呼ばれるモジュール型ニューロシンボリックプログラミングのようなタスクを再構成する。
我々は,FOLIOとProofWriterのバランスの取れたサブセットに対して,ほぼすべての実験条件下で,3つの異なるモデルに対して顕著な性能向上を観察した。
論文 参考訳(メタデータ) (2023-10-23T17:58:40Z) - Logic-LM: Empowering Large Language Models with Symbolic Solvers for
Faithful Logical Reasoning [101.26814728062065]
大規模言語モデル(LLM)は人間のような推論能力を示しているが、それでも複雑な論理的問題に悩まされている。
本稿では,論理問題の解法を改善するために,LLMとシンボリックソルバを統合した新しいフレームワークであるLogic-LMを紹介する。
論文 参考訳(メタデータ) (2023-05-20T22:25:38Z) - SatLM: Satisfiability-Aided Language Models Using Declarative Prompting [68.40726892904286]
本研究では,大規模言語モデル (LLM) の推論能力を向上させるために,新しい満足度支援言語モデリング (SatLM) 手法を提案する。
我々はLLMを用いて命令型プログラムではなく宣言型タスク仕様を生成し、既製の自動定理証明器を利用して最終解を導出する。
我々はSATLMを8つの異なるデータセット上で評価し、命令パラダイムにおいてプログラム支援されたLMよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-05-16T17:55:51Z) - LAMBADA: Backward Chaining for Automated Reasoning in Natural Language [11.096348678079574]
LAMBADAと呼ばれる逆チェインアルゴリズムは、推論を4つのサブモジュールに分解する。
LAMBADAは最先端のフォワード推論手法よりも精度が向上することを示す。
論文 参考訳(メタデータ) (2022-12-20T18:06:03Z) - Linear Temporal Logic Modulo Theories over Finite Traces (Extended
Version) [72.38188258853155]
有限トレース(LTLf)上の線形時間論理について検討する。
命題の文字は任意の理論で解釈された一階述語式に置き換えられる。
Satisfiability Modulo Theories (LTLfMT) と呼ばれる結果の論理は半決定可能である。
論文 参考訳(メタデータ) (2022-04-28T17:57:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。