論文の概要: Divide and Translate: Compositional First-Order Logic Translation and Verification for Complex Logical Reasoning
- arxiv url: http://arxiv.org/abs/2410.08047v1
- Date: Thu, 10 Oct 2024 15:42:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 05:45:05.989457
- Title: Divide and Translate: Compositional First-Order Logic Translation and Verification for Complex Logical Reasoning
- Title(参考訳): 分割と翻訳:複雑な論理推論のための一階論理変換と検証
- Authors: Hyun Ryu, Gyeongman Kim, Hyemin S. Lee, Eunho Yang,
- Abstract要約: 複雑な論理的推論タスクは、長い推論を必要とするが、それは、チェーン・オブ・シークレットのプロンプトを持つ大きな言語モデル(LLM)が依然として不足している。
本稿では,翻訳中に自然言語に隠された論理的意味を抽出する合成一階論理翻訳を提案する。
提案手法は,CLOVERと呼ばれる7つの論理的推論ベンチマークを用いて評価し,従来のニューロシンボリックアプローチよりも優れていたことを示す。
- 参考スコア(独自算出の注目度): 28.111458981621105
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Complex logical reasoning tasks require a long sequence of reasoning, which a large language model (LLM) with chain-of-thought prompting still falls short. To alleviate this issue, neurosymbolic approaches incorporate a symbolic solver. Specifically, an LLM only translates a natural language problem into a satisfiability (SAT) problem that consists of first-order logic formulas, and a sound symbolic solver returns a mathematically correct solution. However, we discover that LLMs have difficulties to capture complex logical semantics hidden in the natural language during translation. To resolve this limitation, we propose a Compositional First-Order Logic Translation. An LLM first parses a natural language sentence into newly defined logical dependency structures that consist of an atomic subsentence and its dependents, then sequentially translate the parsed subsentences. Since multiple logical dependency structures and sequential translations are possible for a single sentence, we also introduce two Verification algorithms to ensure more reliable results. We utilize an SAT solver to rigorously compare semantics of generated first-order logic formulas and select the most probable one. We evaluate the proposed method, dubbed CLOVER, on seven logical reasoning benchmarks and show that it outperforms the previous neurosymbolic approaches and achieves new state-of-the-art results.
- Abstract(参考訳): 複雑な論理的推論タスクは、長い推論を必要とするが、それは、チェーン・オブ・シークレットのプロンプトを持つ大きな言語モデル(LLM)が依然として不足している。
この問題を緩和するため、ニューロシンボリックアプローチにはシンボリック・ソルバが組み込まれている。
具体的には、LLMは自然言語問題を一階述語論理式からなるSAT問題にのみ変換し、音響記号解法は数学的に正しい解を返す。
しかし,LLMは翻訳中に自然言語に隠された複雑な論理的意味を捉えるのが困難であることが判明した。
この制限を解決するために,合成一階論理変換を提案する。
LLMは、まず自然言語文を、原子文とその依存物からなる新しく定義された論理的依存構造に解析し、解析された部分文を逐次翻訳する。
複数の論理的係り受け構造と逐次翻訳が一つの文で可能であるので、より信頼性の高い結果を保証するための2つの検証アルゴリズムも導入する。
SATソルバを用いて、生成した一階述語論理式のセマンティクスを厳密に比較し、最も確率の高い論理式を選択する。
我々は,CLOVERと呼ばれる提案手法を7つの論理的推論ベンチマークで評価し,従来のニューロシンボリックアプローチよりも優れ,新たな最先端結果が得られることを示す。
関連論文リスト
- A Semantic Parsing Algorithm to Solve Linear Ordering Problems [2.23890712706409]
線形順序付け問題を意味論的に解析するアルゴリズムを開発した。
提案手法は,複数の前提文と候補文を入力として扱う。
次に、制約論理プログラミングを用いて、注文に関する提案された文の真相を推測する。
論文 参考訳(メタデータ) (2025-02-12T13:58:42Z) - Reasoning-as-Logic-Units: Scaling Test-Time Reasoning in Large Language Models Through Logic Unit Alignment [21.12989936864145]
CoT(Chain-of-Thought)のプロンプトによって,大規模言語モデル(LLM)の推論能力の向上が期待できる。
本稿では、生成したプログラムと対応するNL記述との間に論理単位を整列させることにより、より信頼性の高い推論経路を構築するReasoning-as-Logic-Units (RaLU)を提案する。
論文 参考訳(メタデータ) (2025-02-05T08:23:18Z) - Faithful Logical Reasoning via Symbolic Chain-of-Thought [39.94884827166363]
シンボリック表現と論理規則をChain-of-Thoughtプロンプトと統合するフレームワークであるSymbCoTを提案する。
我々は、SymbCoTがCoT法よりも大幅に改善されていることを示す。
これは、論理的推論のために記号表現と規則をCoTに結合する最初の方法である。
論文 参考訳(メタデータ) (2024-05-28T16:55:33Z) - LogicBench: Towards Systematic Evaluation of Logical Reasoning Ability of Large Language Models [52.03659714625452]
最近開発された大規模言語モデル (LLM) は、幅広い言語理解タスクにおいて非常によく機能することが示されている。
しかし、それらは自然言語に対して本当に「理性」があるのだろうか?
この疑問は研究の注目を集めており、コモンセンス、数値、定性的など多くの推論技術が研究されている。
論文 参考訳(メタデータ) (2024-04-23T21:08:49Z) - Neuro-Symbolic Integration Brings Causal and Reliable Reasoning Proofs [95.07757789781213]
LLMの複雑な推論には2行のアプローチが採用されている。
1行の作業は様々な推論構造を持つLLMを誘導し、構造出力は自然に中間推論ステップと見なすことができる。
他方の行では、LCMのない宣言的解法を用いて推論処理を行い、推論精度は向上するが、解法のブラックボックスの性質により解釈性に欠ける。
具体的には,Prologインタプリタが生成した中間検索ログにアクセスし,人間可読推論に解釈可能であることを示す。
論文 参考訳(メタデータ) (2023-11-16T11:26:21Z) - Language Models can be Logical Solvers [99.40649402395725]
論理解法の推論過程を直接エミュレートする新しい言語モデルであるLoGiPTを導入する。
LoGiPTは、導出的ソルバの見えない推論過程を明らかにして精錬することから導かれる、新しく構築された命令チューニングデータセットに基づいて微調整される。
論文 参考訳(メタデータ) (2023-11-10T16:23:50Z) - LINC: A Neurosymbolic Approach for Logical Reasoning by Combining
Language Models with First-Order Logic Provers [60.009969929857704]
論理的推論は、科学、数学、社会に潜在的影響を与える可能性のある人工知能にとって重要なタスクである。
本研究では、LINCと呼ばれるモジュール型ニューロシンボリックプログラミングのようなタスクを再構成する。
我々は,FOLIOとProofWriterのバランスの取れたサブセットに対して,ほぼすべての実験条件下で,3つの異なるモデルに対して顕著な性能向上を観察した。
論文 参考訳(メタデータ) (2023-10-23T17:58:40Z) - Logic-LM: Empowering Large Language Models with Symbolic Solvers for
Faithful Logical Reasoning [101.26814728062065]
大規模言語モデル(LLM)は人間のような推論能力を示しているが、それでも複雑な論理的問題に悩まされている。
本稿では,論理問題の解法を改善するために,LLMとシンボリックソルバを統合した新しいフレームワークであるLogic-LMを紹介する。
論文 参考訳(メタデータ) (2023-05-20T22:25:38Z) - Logic-Driven Context Extension and Data Augmentation for Logical
Reasoning of Text [65.24325614642223]
論理的な記号や表現をテキストで理解し、答えにたどり着くよう提案します。
このような論理的情報に基づいて,文脈拡張フレームワークとデータ拡張アルゴリズムを提案する。
本手法は最先端の性能を実現し,論理駆動コンテキスト拡張フレームワークとデータ拡張アルゴリズムの両方が精度向上に寄与する。
論文 参考訳(メタデータ) (2021-05-08T10:09:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。