Quantum fluctuations and unusual critical exponents in a quantum Rabi
Triangle
- URL: http://arxiv.org/abs/2402.12815v1
- Date: Tue, 20 Feb 2024 08:33:37 GMT
- Title: Quantum fluctuations and unusual critical exponents in a quantum Rabi
Triangle
- Authors: Xiao Qin, Yu-Yu Zhang
- Abstract summary: Quantum fluctuations of a quantum Rabi triangle are studied using an analytical approach beyond the mean-field theory.
We focus on the scaling exponents of the fluctuations of the local photon number and the position variance near the critical point.
- Score: 9.425027735869126
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum fluctuations of a quantum Rabi triangle are studied using an
analytical approach beyond the mean-field theory. By applying an artificial
magnetic field among three cavities, time-reversal symmetry breaking is
manifested through a directional transfer dynamics of photons. In contrast to
previous studies, we focus on the scaling exponents of the fluctuations of the
local photon number and the position variance near the critical point. By
accurate calculation using Bogoliubov transformation we show that two scaling
laws emerge respectively for the frustrated cavity and the remaining cavities,
which are associated with the geometric frustrations. Especially, for the
frustrated cavity, the scaling exponent in the chiral superradiant phase is
different from that in the frustrated antiferromagnetic superradiant phase
without an artificial magnetic field. The unusual scaling exponents predict
distinct universality classes from the single-cavity Rabi universality. We
suggest that the accurate critical exponents in few-body system is useful for
identifying exotic quantum phase transition in light-matter coupling system.
Related papers
- Crossing exceptional points in non-Hermitian quantum systems [41.94295877935867]
We reveal the behavior of two-photon quantum states in non-Hermitian systems across the exceptional point.
We demonstrate a switching in the quantum interference of photons directly at the exceptional point.
arXiv Detail & Related papers (2024-07-17T14:04:00Z) - Quantum entanglement in the multicritical disordered Ising model [0.0]
entanglement entropy is calculated at the quantum multicritical point of the random transverse-field Ising model.
We find a universal logarithmic corner contribution to the area law b*ln(l) that is independent of the form of disorder.
arXiv Detail & Related papers (2024-04-19T16:42:43Z) - Critical quantum geometric tensors of parametrically-driven nonlinear
resonators [5.743814444071535]
Parametrically driven nonlinear resonators represent building block for realizing fault-tolerant quantum computation.
Critical phenomena can occur without interaction with any other quantum system.
This work reveals that the quantum metric and Berry curvature display diverging behaviors across the quantum phase transition.
arXiv Detail & Related papers (2023-12-22T03:31:58Z) - Cavity-renormalized quantum criticality in a honeycomb bilayer
antiferromagnet [0.3359875577705538]
We investigate the fate of a quantum critical antiferromagnet coupled to an optical cavity field.
Using unbiased quantum Monte Carlo simulations, we compute the scaling behavior of the magnetic structure factor.
Our microscopic model is based on realistic parameters for two-dimensional magnetic quantum materials.
arXiv Detail & Related papers (2023-02-16T19:00:45Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Characterizing quantum criticality and steered coherence in the XY-Gamma
chain [0.37498611358320727]
We analytically solve the one-dimensional short-range interacting case with the Jordan-Wigner transformation.
In the gapless phase, an incommensurate spiral order is manifested by the vector-chiral correlations.
We derive explicit scaling forms of the excitation gap near the quantum critical points.
arXiv Detail & Related papers (2022-06-08T15:28:10Z) - Phase diagram of a distorted kagome antiferromagnet and application to
Y-kapellasite [50.591267188664666]
We reveal a rich ground state phase diagram even at the classical level.
The presented model opens a new direction in the study of kagome antiferromagnets.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Quantum tricriticality of chiral-coherent phase in quantum Rabi triangle [7.794322167684932]
We study a quantum Rabi triangle system as an elementary building block for an artificial magnetic field.
We develop an analytical approach to study the rich phase diagram and the associated quantum criticality.
This model can simulate a broad range of physical phenomena of light-matter coupling systems.
arXiv Detail & Related papers (2020-11-23T02:03:00Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.