論文の概要: SolarPanel Segmentation :Self-Supervised Learning for Imperfect Datasets
- arxiv url: http://arxiv.org/abs/2402.12843v1
- Date: Tue, 20 Feb 2024 09:13:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-21 16:07:51.743606
- Title: SolarPanel Segmentation :Self-Supervised Learning for Imperfect Datasets
- Title(参考訳): ソーラーパネルセグメンテーション : 不完全なデータセットの自己改善学習
- Authors: Sankarshanaa Sagaram, Aditya Kasliwal, Krish Didwania, Laven
Srivastava, Pallavi Kailas, Ujjwal Verma
- Abstract要約: 本稿では,パネルセグメンテーションの課題,特に注釈付きデータの不足,および教師あり学習のための手動アノテーションの労働集約性について論じる。
これらの課題を解決するために、自己監視学習(SSL)を探求し、適用します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing adoption of solar energy necessitates advanced methodologies
for monitoring and maintenance to ensure optimal performance of solar panel
installations. A critical component in this context is the accurate
segmentation of solar panels from aerial or satellite imagery, which is
essential for identifying operational issues and assessing efficiency. This
paper addresses the significant challenges in panel segmentation, particularly
the scarcity of annotated data and the labour-intensive nature of manual
annotation for supervised learning. We explore and apply Self-Supervised
Learning (SSL) to solve these challenges. We demonstrate that SSL significantly
enhances model generalization under various conditions and reduces dependency
on manually annotated data, paving the way for robust and adaptable solar panel
segmentation solutions.
- Abstract(参考訳): 太陽エネルギーの採用の増加は、ソーラーパネルの最適性能を確保するために、監視と保守のための高度な手法を必要とする。
この文脈における重要な要素は、航空または衛星画像からの正確なソーラーパネルのセグメンテーションであり、これは運用上の問題を特定し、効率を評価するのに不可欠である。
本稿では,パネルセグメンテーションにおける重要な課題,特に注釈データの不足と,教師付き学習のためのマニュアルアノテーションの労働集約性について述べる。
これらの課題を解決するために、自己監視学習(SSL)を探求し、適用します。
SSLは様々な条件下でのモデル一般化を著しく促進し、手動の注釈付きデータへの依存を低減し、堅牢で適応可能なソーラーパネルセグメンテーションソリューションへの道を開くことを実証する。
関連論文リスト
- TinyML NLP Approach for Semantic Wireless Sentiment Classification [49.801175302937246]
本稿では,エネルギー効率のよいプライバシ保護型小型機械学習(MLTiny)方式としてスプリットラーニング(SL)を導入する。
その結果,SLは高い精度を維持しながら処理能力とCO2排出量を低減し,FLは効率とプライバシのバランスのとれた妥協を提供することがわかった。
論文 参考訳(メタデータ) (2024-11-09T21:26:59Z) - S3Former: Self-supervised High-resolution Transformer for Solar PV Profiling [6.646508986504754]
航空画像からソーラーパネルを分割し,サイズと位置情報を提供するS3Formerを紹介した。
S3FormerはMasked Attention Mask Transformerを備えている。
多様なデータセットを用いてS3Formerを評価し、最先端モデルの改善を実証する。
論文 参考訳(メタデータ) (2024-05-07T16:56:21Z) - Optimizing Language Model's Reasoning Abilities with Weak Supervision [48.60598455782159]
弱い教師付きベンチマークであるtextscPuzzleBen について,25,147 の複雑な質問,回答,人為的合理性からなる。
データセットのユニークな側面は、10,000の未注釈の質問を含めることであり、LLMの推論能力を高めるために、より少ないスーパーサイズのデータを活用することができる。
論文 参考訳(メタデータ) (2024-05-07T07:39:15Z) - Improving day-ahead Solar Irradiance Time Series Forecasting by
Leveraging Spatio-Temporal Context [46.72071291175356]
太陽発電は二酸化炭素の排出量を大幅に削減することで気候変動を緩和する大きな可能性を秘めている。
しかし、太陽光の固有の変動は、電力網に太陽エネルギーをシームレスに統合する上で大きな課題となる。
本稿では,衛星データを用いた時間的文脈の活用を目的としたディープラーニングアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-06-01T19:54:39Z) - A Comparative Study on Generative Models for High Resolution Solar
Observation Imaging [59.372588316558826]
本研究は、観測された太陽活動状態の背後にあるデータ分布を正確に捉えるために、現在の最先端生成モデルの能力について検討する。
スーパーコンピュータ上での分散トレーニングを用いて、人間の専門家が区別できない高品質なサンプルを生成する、最大1024x1024解像度の生成モデルを訓練することができる。
論文 参考訳(メタデータ) (2023-04-14T14:40:32Z) - Data-driven soiling detection in PV modules [58.6906336996604]
太陽光発電モジュールの土質比を推定する問題について検討した。
私たちのアルゴリズムの重要な利点は、ラベル付きデータでトレーニングする必要がない、土壌を推定することです。
実験により, 土質比を推定するための工法として, 現状を著しく上回っていることが明らかとなった。
論文 参考訳(メタデータ) (2023-01-30T14:35:47Z) - HyperionSolarNet: Solar Panel Detection from Aerial Images [0.7157957528875099]
深層学習法を用いて,空中画像を用いたソーラーパネル位置とその表面積の自動検出を行う。
我々の研究は、ソーラーパネルの検出に効率的でスケーラブルな方法を提供し、分類に0.96の精度とセグメンテーション性能に0.82のIoUスコアを達成している。
論文 参考訳(メタデータ) (2022-01-06T15:43:13Z) - SCSS-Net: Solar Corona Structures Segmentation by Deep Learning [0.0]
太陽コロナの構造は、直接的または間接的に地球に影響を与える可能性のある宇宙の気象過程の主要な要因である。
本研究では,EUVスペクトルで観測された太陽コロナ構造の自動セグメンテーション法を開発した。
このモデルの出力は、太陽活動と地球への宇宙気象の影響の間の関係について、より統計的に研究するために使われる。
論文 参考訳(メタデータ) (2021-09-22T16:51:50Z) - SUPERB: Speech processing Universal PERformance Benchmark [78.41287216481203]
自然言語処理(NLP)とコンピュータビジョン(CV)の研究を進める上で、SSL(Self-supervised Learning)は不可欠です。
SuperBは、幅広い音声処理タスクで共有モデルのパフォーマンスをベンチマークするためのリーダーボードです。
凍結共有モデル上にタスク特化軽量予測ヘッドを学習することで、SUPERBタスクを解決するためのシンプルなフレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-03T17:51:09Z) - Weakly Supervised Segmentation of Cracks on Solar Cells using Normalized
Lp Norm [11.014960310006385]
太陽電池の発光画像にひび割れを分割するための弱教師付き学習手法を提案する。
ネットワークアクティベーションマップからセグメント化を導出するために,ResNet-50を改良した。
また,本手法は,他の弱教師付きセグメンテーション問題も解決できる可能性が示唆された。
論文 参考訳(メタデータ) (2020-01-30T10:51:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。