Synergistic Simulations: Multi-Agent Problem Solving with Large Language Models
- URL: http://arxiv.org/abs/2409.13753v1
- Date: Sat, 14 Sep 2024 21:53:35 GMT
- Title: Synergistic Simulations: Multi-Agent Problem Solving with Large Language Models
- Authors: Asher Sprigler, Alexander Drobek, Keagan Weinstock, Wendpanga Tapsoba, Gavin Childress, Andy Dao, Lucas Gral,
- Abstract summary: Large Language Models (LLMs) have increasingly demonstrated the ability to facilitate the development of multi-agent systems.
This paper aims to integrate agents & world interaction into a single simulation where multiple agents can work together to solve a problem.
We implement two simulations: a physical studio apartment with two roommates, and another where agents collaborate to complete a programming task.
- Score: 36.571597246832326
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have increasingly demonstrated the ability to facilitate the development of multi-agent systems that allow the interpretation of thoughts and actions generated by each individual. Promising advancements have also been made in LLM-based interaction with existing worlds, particularly in interacting with simulated environments. This paper aims to integrate both aforementioned topics (agents & world interaction) into a single simulation where multiple agents can work together to solve a problem, modeling how groups of humans can often solve problems better than individuals. By showing whether LLMs demonstrate the synergy of human collaboration, it could lead to advancements in the applications of LLMs. We implemented two simulations: a physical studio apartment with two roommates, and another where agents collaborate to complete a programming task. We provide a multi-agent framework, discuss the performance of the agents in each simulation, and discuss potential future additions.
Related papers
- GenSim: A General Social Simulation Platform with Large Language Model based Agents [111.00666003559324]
We propose a novel large language model (LLMs)-based simulation platform called textitGenSim.
Our platform supports one hundred thousand agents to better simulate large-scale populations in real-world contexts.
To our knowledge, GenSim represents an initial step toward a general, large-scale, and correctable social simulation platform.
arXiv Detail & Related papers (2024-10-06T05:02:23Z) - LLM-Augmented Agent-Based Modelling for Social Simulations: Challenges and Opportunities [0.0]
Integrating large language models with agent-based simulations offers a transformational potential for understanding complex social systems.
We explore architectures and methods to systematically develop LLM-augmented social simulations.
We conclude that integrating LLMs with agent-based simulations offers a powerful toolset for researchers and scientists.
arXiv Detail & Related papers (2024-05-08T08:57:54Z) - COMBO: Compositional World Models for Embodied Multi-Agent Cooperation [64.27636858152522]
Decentralized agents must cooperate given only partial egocentric views of the world.
We train generative models to estimate the overall world state given partial egocentric observations.
We learn a compositional world model for multi-agent cooperation by factorizing the naturally composable joint actions of multiple agents.
arXiv Detail & Related papers (2024-04-16T17:59:11Z) - Large Language Model-based Human-Agent Collaboration for Complex Task
Solving [94.3914058341565]
We introduce the problem of Large Language Models (LLMs)-based human-agent collaboration for complex task-solving.
We propose a Reinforcement Learning-based Human-Agent Collaboration method, ReHAC.
This approach includes a policy model designed to determine the most opportune stages for human intervention within the task-solving process.
arXiv Detail & Related papers (2024-02-20T11:03:36Z) - SpeechAgents: Human-Communication Simulation with Multi-Modal
Multi-Agent Systems [53.94772445896213]
Large Language Model (LLM)-based multi-agent systems have demonstrated promising performance in simulating human society.
We propose SpeechAgents, a multi-modal LLM based multi-agent system designed for simulating human communication.
arXiv Detail & Related papers (2024-01-08T15:01:08Z) - Multi-Agent Consensus Seeking via Large Language Models [6.922356864800498]
Multi-agent systems driven by large language models (LLMs) have shown promising abilities for solving complex tasks in a collaborative manner.
This work considers a fundamental problem in multi-agent collaboration: consensus seeking.
arXiv Detail & Related papers (2023-10-31T03:37:11Z) - Cooperation, Competition, and Maliciousness: LLM-Stakeholders Interactive Negotiation [52.930183136111864]
We propose using scorable negotiation to evaluate Large Language Models (LLMs)
To reach an agreement, agents must have strong arithmetic, inference, exploration, and planning capabilities.
We provide procedures to create new games and increase games' difficulty to have an evolving benchmark.
arXiv Detail & Related papers (2023-09-29T13:33:06Z) - Exploring the Intersection of Large Language Models and Agent-Based
Modeling via Prompt Engineering [0.0]
Large language models (LLMs) have emerged as a potential solution to this bottleneck.
We present two simulations of believable proxies of human behavior.
arXiv Detail & Related papers (2023-08-14T18:58:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.