論文の概要: Code Needs Comments: Enhancing Code LLMs with Comment Augmentation
- arxiv url: http://arxiv.org/abs/2402.13013v1
- Date: Tue, 20 Feb 2024 13:56:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-21 15:08:21.546118
- Title: Code Needs Comments: Enhancing Code LLMs with Comment Augmentation
- Title(参考訳): コードにコメントが必要:コメント強化によるコードLLMの強化
- Authors: Demin Song, Honglin Guo, Yunhua Zhou, Shuhao Xing, Yudong Wang, Zifan
Song, Wenwei Zhang, Qipeng Guo, Hang Yan, Xipeng Qiu, Dahua Lin
- Abstract要約: 本稿では、既存のコードに対するコメントを生成する新しいデータ拡張手法と、自然言語と相関の低いコードデータをフィルタリングするデータフィルタリング戦略を導入する。
我々は3つのコード中心の大規模言語モデルの実験を行い、2つの広く使われているプログラミングスキルベンチマークで一貫した性能向上を観察した。
- 参考スコア(独自算出の注目度): 91.52444946362547
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The programming skill is one crucial ability for Large Language Models
(LLMs), necessitating a deep understanding of programming languages (PLs) and
their correlation with natural languages (NLs). We examine the impact of
pre-training data on code-focused LLMs' performance by assessing the comment
density as a measure of PL-NL alignment. Given the scarcity of code-comment
aligned data in pre-training corpora, we introduce a novel data augmentation
method that generates comments for existing code, coupled with a data filtering
strategy that filters out code data poorly correlated with natural language. We
conducted experiments on three code-focused LLMs and observed consistent
improvements in performance on two widely-used programming skill benchmarks.
Notably, the model trained on the augmented data outperformed both the model
used for generating comments and the model further trained on the data without
augmentation.
- Abstract(参考訳): プログラミングスキルは、Large Language Models(LLM)にとって重要な能力のひとつであり、プログラミング言語(PL)の深い理解と、自然言語(NL)との相関を必要とする。
PL-NLアライメントの指標としてコメント密度を評価することにより,事前学習がコード中心のLLMの性能に与える影響を検討する。
事前学習コーパスにおけるコード・コンフィグレーション・アライメントデータの不足を踏まえ,既存のコードに対するコメントを生成する新しいデータ拡張手法と,自然言語と相関の低いコードデータをフィルタリングするデータフィルタリング戦略を導入する。
我々は3つのコード中心のLLMの実験を行い、2つの広く使われているプログラミングスキルベンチマークで一貫した性能向上を観察した。
特に、拡張データでトレーニングされたモデルは、コメントを生成するために使用されるモデルと、拡張せずにさらにデータでトレーニングされたモデルの両方を上回った。
関連論文リスト
- Prompting and Fine-tuning Large Language Models for Automated Code Review Comment Generation [5.6001617185032595]
プログラムデータと自然言語データの両方で事前訓練された大きな言語モデルは、コード指向のタスクでうまく機能する傾向にある。
我々は,パラメータ効率,量子化低ランクのオープンソースLarge Language Model (LLM) をコンシューマグレードハードウェア上で微調整し,レビューコメント生成を改善する。
論文 参考訳(メタデータ) (2024-11-15T12:01:38Z) - OpenCoder: The Open Cookbook for Top-Tier Code Large Language Models [70.72097493954067]
コードのための大規模言語モデル(LLM)は、コード生成、推論タスク、エージェントシステムなど、さまざまな領域で必須になっている。
オープンアクセスのコード LLM はプロプライエタリなモデルの性能レベルに近づきつつあるが、高品質なコード LLM は依然として限られている。
トップクラスのコードLLMであるOpenCoderは、主要なモデルに匹敵するパフォーマンスを達成するだけでなく、研究コミュニティの"オープンクックブック"としても機能します。
論文 参考訳(メタデータ) (2024-11-07T17:47:25Z) - Crystal: Illuminating LLM Abilities on Language and Code [58.5467653736537]
本稿では,自然言語と符号化機能の統合性を高めるための事前学習戦略を提案する。
結果のモデルであるCrystalは、両方のドメインで顕著な能力を示します。
論文 参考訳(メタデータ) (2024-11-06T10:28:46Z) - Code Less, Align More: Efficient LLM Fine-tuning for Code Generation with Data Pruning [4.975728472540823]
各種クラスタリングとプルーニングのメトリクスを統合して、生成されたコードの正確性や機能を損なうことなく、トレーニングデータを選択的に削減する手法を提案する。
実験により,これらのプルーニング戦略は,必要な計算資源を削減するだけでなく,全体的な品質コード生成を向上することが示された。
論文 参考訳(メタデータ) (2024-07-06T10:30:43Z) - CodecLM: Aligning Language Models with Tailored Synthetic Data [51.59223474427153]
命令追従能力のための高品質な合成データを適応的に生成するフレームワークであるCodecLMを紹介する。
まず、ターゲットの指示分布をキャプチャするために、オンザフライで生成された簡潔なキーワードであるメタデータにシード命令をエンコードする。
また、デコード中に自己論理とコントラストフィルタを導入し、データ効率の良いサンプルを調整する。
論文 参考訳(メタデータ) (2024-04-08T21:15:36Z) - LLM-Assisted Code Cleaning For Training Accurate Code Generators [53.087019724256606]
コードの品質を調査した結果,より構造化され,読みやすくなれば,コード生成性能が向上することがわかった。
私たちは、これらの原則を使って既存のプログラムを変換する、新しいデータクリーニングパイプラインを構築します。
提案手法を2つのアルゴリズムコード生成ベンチマークで評価した結果,微調整のCodeLLaMa-7Bでは,元のデータセットの微調整に比べて最大30%性能が向上していることがわかった。
論文 参考訳(メタデータ) (2023-11-25T02:45:50Z) - Exploring Large Language Models for Code Explanation [3.2570216147409514]
大規模言語モデル(LLM)は自然言語処理において顕著な進歩を遂げている。
本研究では,様々なLLMを用いて,コードスニペットの自然言語要約を生成するタスクについて検討する。
論文 参考訳(メタデータ) (2023-10-25T14:38:40Z) - CoAnnotating: Uncertainty-Guided Work Allocation between Human and Large
Language Models for Data Annotation [94.59630161324013]
本稿では,非構造化テキストの大規模共同アノテーションのための新しいパラダイムであるCoAnnotatingを提案する。
我々の実証研究は、CoAnnotatingが、異なるデータセット上の結果から作業を割り当てる効果的な手段であることを示し、ランダムベースラインよりも最大21%のパフォーマンス改善を実現している。
論文 参考訳(メタデータ) (2023-10-24T08:56:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。