Mode Estimation with Partial Feedback
- URL: http://arxiv.org/abs/2402.13079v1
- Date: Tue, 20 Feb 2024 15:24:21 GMT
- Title: Mode Estimation with Partial Feedback
- Authors: Charles Arnal, Vivien Cabannes, Vianney Perchet
- Abstract summary: We formalize core aspects of weakly supervised and active learning with a simple problem.
We show how entropy coding allows for optimal information acquisition from partial feedback.
- Score: 20.426429576184145
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The combination of lightly supervised pre-training and online fine-tuning has
played a key role in recent AI developments. These new learning pipelines call
for new theoretical frameworks. In this paper, we formalize core aspects of
weakly supervised and active learning with a simple problem: the estimation of
the mode of a distribution using partial feedback. We show how entropy coding
allows for optimal information acquisition from partial feedback, develop
coarse sufficient statistics for mode identification, and adapt bandit
algorithms to our new setting. Finally, we combine those contributions into a
statistically and computationally efficient solution to our problem.
Related papers
- A Bayesian Approach to Data Point Selection [24.98069363998565]
Data point selection (DPS) is becoming a critical topic in deep learning.
Existing approaches to DPS are predominantly based on a bi-level optimisation (BLO) formulation.
We propose a novel Bayesian approach to DPS.
arXiv Detail & Related papers (2024-11-06T09:04:13Z) - On Discriminative Probabilistic Modeling for Self-Supervised Representation Learning [85.75164588939185]
We study the discriminative probabilistic modeling problem on a continuous domain for (multimodal) self-supervised representation learning.
We conduct generalization error analysis to reveal the limitation of current InfoNCE-based contrastive loss for self-supervised representation learning.
arXiv Detail & Related papers (2024-10-11T18:02:46Z) - A Unified Framework for Neural Computation and Learning Over Time [56.44910327178975]
Hamiltonian Learning is a novel unified framework for learning with neural networks "over time"
It is based on differential equations that: (i) can be integrated without the need of external software solvers; (ii) generalize the well-established notion of gradient-based learning in feed-forward and recurrent networks; (iii) open to novel perspectives.
arXiv Detail & Related papers (2024-09-18T14:57:13Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
We take a closer theoretical look at Independent Subnetwork Training (IST)
IST is a recently proposed and highly effective technique for solving the aforementioned problems.
We identify fundamental differences between IST and alternative approaches, such as distributed methods with compressed communication.
arXiv Detail & Related papers (2023-06-28T18:14:22Z) - End-to-End Learning for Stochastic Optimization: A Bayesian Perspective [9.356870107137093]
We develop a principled approach to end-to-end learning in optimization.
We show that the standard end-to-end learning algorithm admits a Bayesian interpretation and trains a posterior Bayes action map.
We then propose new end-to-end learning algorithms for training decision maps.
arXiv Detail & Related papers (2023-06-07T05:55:45Z) - Harnessing Heterogeneity: Learning from Decomposed Feedback in Bayesian
Modeling [68.69431580852535]
We introduce a novel GP regression to incorporate the subgroup feedback.
Our modified regression has provably lower variance -- and thus a more accurate posterior -- compared to previous approaches.
We execute our algorithm on two disparate social problems.
arXiv Detail & Related papers (2021-07-07T03:57:22Z) - Adaptive Sampling for Minimax Fair Classification [40.936345085421955]
We propose an adaptive sampling algorithm based on the principle of optimism, and derive theoretical bounds on its performance.
By deriving algorithm independent lower-bounds for a specific class of problems, we show that the performance achieved by our adaptive scheme cannot be improved in general.
arXiv Detail & Related papers (2021-03-01T04:58:27Z) - Logistic Q-Learning [87.00813469969167]
We propose a new reinforcement learning algorithm derived from a regularized linear-programming formulation of optimal control in MDPs.
The main feature of our algorithm is a convex loss function for policy evaluation that serves as a theoretically sound alternative to the widely used squared Bellman error.
arXiv Detail & Related papers (2020-10-21T17:14:31Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
We present a method for learning multiple models, incorporating an objective that pressures each to learn a distinct way to solve the task.
We demonstrate our framework's ability to facilitate rapid adaptation to distribution shift.
arXiv Detail & Related papers (2020-06-12T12:23:50Z) - Learning the Travelling Salesperson Problem Requires Rethinking
Generalization [9.176056742068813]
End-to-end training of neural network solvers for graph optimization problems such as the Travelling Salesperson Problem (TSP) have seen a surge of interest recently.
While state-of-the-art learning-driven approaches perform closely to classical solvers when trained on trivially small sizes, they are unable to generalize the learnt policy to larger instances at practical scales.
This work presents an end-to-end neural optimization pipeline that unifies several recent papers in order to identify the principled biases, model architectures and learning algorithms that promote generalization to instances larger than those seen in training.
arXiv Detail & Related papers (2020-06-12T10:14:15Z) - Unbiased Deep Reinforcement Learning: A General Training Framework for
Existing and Future Algorithms [3.7050607140679026]
We propose a novel training framework that is conceptually comprehensible and potentially easy to be generalized to all feasible algorithms for reinforcement learning.
We employ Monte-carlo sampling to achieve raw data inputs, and train them in batch to achieve Markov decision process sequences.
We propose several algorithms embedded with our new framework to deal with typical discrete and continuous scenarios.
arXiv Detail & Related papers (2020-05-12T01:51:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.