Coherent Detection of Discrete Variable Quantum Key Distribution using
Homodyne Technique
- URL: http://arxiv.org/abs/2402.13095v1
- Date: Tue, 20 Feb 2024 15:39:50 GMT
- Title: Coherent Detection of Discrete Variable Quantum Key Distribution using
Homodyne Technique
- Authors: Ayesha Jamal, Muhammad Kamran, Tahir Malik, Fahim ul Haq, Muhammad
Mubashir Khan
- Abstract summary: Homodyne detection method is frequently employed for its simplicity in use, effectiveness in terms of error correction, and suitability with contemporary optical communication systems.
We present simulation results for System Efficiency and Quantum Bit Error Rate (QBER) for the proposed model.
- Score: 0.18749305679160366
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In Discrete Variable Quantum Key Distribution (DV-QKD), homodyne detection
method is frequently employed for its simplicity in use, effectiveness in terms
of error correction, and suitability with contemporary optical communication
systems. Being a coherent detection method, it relies on a local oscillator
whose frequency is matched to that of the transmitted carrier's signal. In this
paper we evaluate a Free Space Optical (FSO) DV-QKD system based on the KMB09
protocol using Homodyne detection under random phase fluctuation and
depolarizing noise error. We present simulation results for System Efficiency
and Quantum Bit Error Rate (QBER) for the proposed model. An obtained
efficiency (approximately 25%) for our proposed DV-QKD system model shows that
under atmospheric turbulence and noise effect, it is inline with the available
analytical results. However, the inclusion of random phase fluctuation and
noise led to higher-than-normal QBER which is anticipated in a real-world
scenario
Related papers
- Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Homodyne coherent quantum noise cancellation in a hybrid optomechanical
force sensor [0.0]
We propose an experimentally viable scheme to enhance the sensitivity of force detection in a hybrid optomechanical setup assisted by squeezed vacuum injection.
We show here that the adoption of variational homodyne readout enables us to enhance this noise cancellation up to $40 mathrmdB$ compared to the standard case.
We show that at nonzero cavity detuning, the signal response can be amplified at a level three to five times larger than that in the standard case.
arXiv Detail & Related papers (2022-01-06T14:07:27Z) - Optimal design and performance evaluation of free-space Quantum Key
Distribution systems [0.0]
We present a model of the performance of a free-space ground-to-ground quantum key distribution (QKD) system based on the efficient-BB84 protocol with active decoy states.
We find that the channel fluctuation statistics must be considered to correctly estimate the effect of the saturation rate of the single-photon detectors.
arXiv Detail & Related papers (2021-09-28T17:28:31Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Homodyne Detection Quadrature Phase Shift Keying Continuous-Variable
Quantum Key Distribution with High Excess Noise Tolerance [7.87972015113057]
We propose a homodyne detection protocol using the quadrature phase shift keying technique.
By limiting information leakage, our proposed protocol enhances excess noise tolerance to a high level.
Our results imply that the current protocol is able to distribute keys in nearly intercity area.
arXiv Detail & Related papers (2021-04-22T16:10:35Z) - Round-robin differential phase-time-shifting protocol for quantum key
distribution: theory and experiment [58.03659958248968]
Quantum key distribution (QKD) allows the establishment of common cryptographic keys among distant parties.
Recently, a QKD protocol that circumvents the need for monitoring signal disturbance, has been proposed and demonstrated in initial experiments.
We derive the security proofs of the round-robin differential phase-time-shifting protocol in the collective attack scenario.
Our results show that the RRDPTS protocol can achieve higher secret key rate in comparison with the RRDPS, in the condition of high quantum bit error rate.
arXiv Detail & Related papers (2021-03-15T15:20:09Z) - Assessment of weak-coupling approximations on a driven two-level system
under dissipation [58.720142291102135]
We study a driven qubit through the numerically exact and non-perturbative method known as the Liouville-von equation with dissipation.
We propose a metric that may be used in experiments to map the regime of validity of the Lindblad equation in predicting the steady state of the driven qubit.
arXiv Detail & Related papers (2020-11-11T22:45:57Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
We introduce a conditional witnessing technique to certify genuine multipartite entanglement (GME)
We prove that the detection of entanglement in a linear number of bipartitions by a number of measurements scales linearly, suffices to certify GME.
We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version.
arXiv Detail & Related papers (2020-10-06T18:00:07Z) - The BB84 quantum key distribution using conjugate homodyne detection [0.0]
A conjugate homodyne detection system can simultaneously measure a pair of conjugate quadratures X and P of the incoming quantum state.
We show that a blind application of the standard security proof could result pessimistic QKD performance.
This study may open the door to a new family of QKD protocols, in to the well-established DV-QKD based on single photon detection and CV-QKD based on coherent detection.
arXiv Detail & Related papers (2020-08-10T14:13:55Z) - Coherent detection schemes for subcarrier wave continuous variable
quantum key distribution [48.87378091233822]
We examine different methods to implement coherent detection in the subcarrier wave quantum key distribution (SCW QKD) systems.
For classical wavefields, we present the models describing homodyne-type and heterodyne-type coherent detection schemes.
arXiv Detail & Related papers (2020-06-30T05:46:09Z) - Experimental passive state preparation for continuous variable quantum
communications [0.0]
An equivalent passive QKD scheme was proposed by exploring the intrinsic field fluctuations of a thermal source.
This passive QKD scheme is especially appealing for chip-scale implementation since no active modulations are required.
We conduct an experimental study of the passively encoded QKD scheme using an off-the-shelf spontaneous emission source operated in continuous-wave mode.
arXiv Detail & Related papers (2020-01-17T16:31:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.