Disorder-free Sachdev-Ye-Kitaev models: Integrability and a precursor of chaos
- URL: http://arxiv.org/abs/2402.13154v3
- Date: Mon, 15 Jul 2024 15:37:10 GMT
- Title: Disorder-free Sachdev-Ye-Kitaev models: Integrability and a precursor of chaos
- Authors: Soshun Ozaki, Hosho Katsura,
- Abstract summary: We study two disorder-free variants of the Sachdev-Ye-Kitaev (SYK) model.
We find that out-of-time-order correlators (OTOCs) in these models exhibit exponential growth at early times.
Our findings illustrate that the clean versions of the SYK models represent simple but nontrivial examples of disorder-free quantum many-body systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce two disorder-free variants of the Sachdev-Ye-Kitaev (SYK) model, demonstrate their integrability, and study their static and dynamical properties. Unlike diagrammatic techniques, the integrability of these models allows us to obtain dynamical correlation functions even when the number of Majorana fermions is finite. From the solutions, we find that out-of-time-order correlators (OTOCs) in these models exhibit exponential growth at early times, resembling that of quantum chaotic systems such as those with disorder or external kick terms. Conversely, our analysis shows no evidence of random-matrix behavior in level statistics or the spectral form factor. Our findings illustrate that the clean versions of the SYK models represent simple but nontrivial examples of disorder-free quantum many-body systems displaying chaos-like behavior of OTOCs.
Related papers
- Critical spin models from holographic disorder [49.1574468325115]
We study the behavior of XXZ spin chains with a quasiperiodic disorder not present in continuum holography.
Our results suggest the existence of a class of critical phases whose symmetries are derived from models of discrete holography.
arXiv Detail & Related papers (2024-09-25T18:00:02Z) - Notes on solvable models of many-body quantum chaos [15.617052284991203]
We study a class of many body chaotic models related to the Brownian Sachdev-Ye-Kitaev model.
An emergent symmetry maps the quantum dynamics into a classical process.
arXiv Detail & Related papers (2024-08-20T18:24:52Z) - Stochastic Differential Equations models for Least-Squares Stochastic Gradient Descent [6.3151583550712065]
We study the dynamics of a continuous-time model of the Gradient Descent (SGD)
We analyze degenerate Differential Equations (squareSDEs) that model SGD either in the case of the training loss (finite samples) or the population one (online setting)
arXiv Detail & Related papers (2024-07-02T14:52:21Z) - Causal Modeling with Stationary Diffusions [89.94899196106223]
We learn differential equations whose stationary densities model a system's behavior under interventions.
We show that they generalize to unseen interventions on their variables, often better than classical approaches.
Our inference method is based on a new theoretical result that expresses a stationarity condition on the diffusion's generator in a reproducing kernel Hilbert space.
arXiv Detail & Related papers (2023-10-26T14:01:17Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Work statistics, quantum signatures and enhanced work extraction in
quadratic fermionic models [62.997667081978825]
In quadratic fermionic models we determine a quantum correction to the work statistics after a sudden and a time-dependent driving.
Such a correction lies in the non-commutativity of the initial quantum state and the time-dependent Hamiltonian.
Thanks to the latter, one can assess the onset of non-classical signatures in the KDQ distribution of work.
arXiv Detail & Related papers (2023-02-27T13:42:40Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - An SYK-inspired model with density-density interactions: spectral & wave
function statistics, Green's function and phase diagram [27.84400682210533]
The Sachdev-Ye-Kitaev (SYK) model is a rare example of a strongly-interacting system that is analytically tractable.
We present a variant of the (complex) SYK model, which restores this integrable.
arXiv Detail & Related papers (2021-05-07T12:29:12Z) - Hessian Eigenspectra of More Realistic Nonlinear Models [73.31363313577941]
We make a emphprecise characterization of the Hessian eigenspectra for a broad family of nonlinear models.
Our analysis takes a step forward to identify the origin of many striking features observed in more complex machine learning models.
arXiv Detail & Related papers (2021-03-02T06:59:52Z) - Long-range level correlations in quantum systems with finite Hilbert
space dimension [0.0]
We study the spectral statistics of quantum systems with finite Hilbert spaces.
We derive a theorem showing that eigenlevels in such systems cannot be globally uncorrelated.
arXiv Detail & Related papers (2020-10-13T15:49:15Z) - Towards quantum simulation of Sachdev-Ye-Kitaev model [5.931069258860319]
We study a simplified version of the Sachdev-Ye-Kitaev (SYK) model with real interactions by exact diagonalization.
A quantum phase transition from a chaotic state to an integrable state is observed by increasing the discrete separation.
arXiv Detail & Related papers (2020-03-03T14:18:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.