Quantized Integrated Shift Effect in Multigap Topological Phases
- URL: http://arxiv.org/abs/2402.13245v2
- Date: Mon, 28 Oct 2024 19:00:00 GMT
- Title: Quantized Integrated Shift Effect in Multigap Topological Phases
- Authors: Wojciech J. Jankowski, Robert-Jan Slager,
- Abstract summary: We recast the quantization in terms of the integrated torsion tensor and the non-Abelian Berry connection constituting Chern-Simons forms.
Our findings provide another quantized electromagnetic dc response due to the nontrivial band topology.
- Score: 0.0
- License:
- Abstract: We show that certain three-dimensional multigap topological insulators can host quantized integrated shift photoconductivities due to bulk invariants that are defined under reality conditions imposed by additional symmetries. We recast the quantization in terms of the integrated torsion tensor and the non-Abelian Berry connection constituting Chern-Simons forms. Physically, we recognize that the topological quantization emerges purely from virtual transitions contributing to the optical response. Our findings provide another quantized electromagnetic dc response due to the nontrivial band topology, beyond the quantum anomalous Hall effect of Chern insulators and quantized circular photogalvanic effect found in Weyl semimetals.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - On reconstruction of states from evolution induced by quantum dynamical
semigroups perturbed by covariant measures [50.24983453990065]
We show the ability to restore states of quantum systems from evolution induced by quantum dynamical semigroups perturbed by covariant measures.
Our procedure describes reconstruction of quantum states transmitted via quantum channels and as a particular example can be applied to reconstruction of photonic states transmitted via optical fibers.
arXiv Detail & Related papers (2023-12-02T09:56:00Z) - Non-Hermitian topological quantum states in a reservoir-engineered
transmon chain [0.0]
We show that a non-Hermitian quantum phase can be realized in a reservoir-engineered transmon chain.
We show that genuine quantum effects are observable in this system via robust and slowly decaying long-range quantum entanglement of the topological end modes.
arXiv Detail & Related papers (2022-10-06T15:21:21Z) - Berry Phase and Topology in Ultrastrongly Coupled Quantum Light-Matter
Systems [0.0]
We develop a faithful and efficient theoretical framework to analyze quantum geometry and topology in materials ultrastrongly coupled to cavity electromagnetic fields in two dimensions.
We show the unitary mapping between the low-energy effective theory of strongly coupled light-matter systems and the Haldane honeycomb model.
arXiv Detail & Related papers (2022-09-03T08:20:53Z) - Manipulating Generalized Dirac Cones In Quantum Metasurfaces [68.8204255655161]
We consider a collection of single quantum emitters arranged in a honeycomb lattice with subwavelength periodicity.
We show that introducing uniaxial anisotropy in the lattice results in modified dispersion relations.
arXiv Detail & Related papers (2022-03-21T17:59:58Z) - Chiral Cavity Quantum Electrodynamics [0.0]
We explore for the first time cavity quantum electrodynamics of a transmon qubit in the topological vacuum of a Harper-Hofstadter topological lattice.
We spectroscopically resolve the individual bulk and edge modes of this lattice, detect vacuum-stimulated Rabi oscillations between the excited transmon and each mode, and thereby measure the synthetic-vacuum-induced Lamb shift of the transmon.
arXiv Detail & Related papers (2021-09-09T22:26:36Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Exploring 2D synthetic quantum Hall physics with a quasi-periodically
driven qubit [58.720142291102135]
Quasi-periodically driven quantum systems are predicted to exhibit quantized topological properties.
We experimentally study a synthetic quantum Hall effect with a two-tone drive.
arXiv Detail & Related papers (2020-04-07T15:00:41Z) - Signatures of topology in quantum quench dynamics and their
interrelation [0.0]
We study the conditions for the appearance of entanglement spectrum crossings, dynamical quantum phase transitions, and dynamical Chern numbers.
For non-interacting models, we show that in general there is no direct relation between these three quantities.
arXiv Detail & Related papers (2020-03-17T18:15:36Z) - Experimental Detection of the Quantum Phases of a Three-Dimensional
Topological Insulator on a Spin Quantum Simulator [4.614115414323219]
We investigate the three-dimensional topological insulators in the AIII (chiral unitary) symmetry class.
We experimentally demonstrate their topological properties, where a dynamical quenching approach is adopted.
As a result, the topological invariants are measured with high precision on the band-inversion surface.
arXiv Detail & Related papers (2020-01-15T03:51:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.