Enhancing the hyperpolarizability of crystals with quantum geometry
- URL: http://arxiv.org/abs/2502.02660v1
- Date: Tue, 04 Feb 2025 19:01:56 GMT
- Title: Enhancing the hyperpolarizability of crystals with quantum geometry
- Authors: Wojciech J. Jankowski, Robert-Jan Slager, Michele Pizzochero,
- Abstract summary: We show that higher-order electric susceptibilities in crystals can be enhanced and understood through nontrivial topological invariants and quantum geometry.
We employ numerical simulations to reveal the tunability of non-linear, quantum geometry-driven optical responses in various one-dimensional crystals.
- Score: 1.2289361708127877
- License:
- Abstract: We demonstrate that higher-order electric susceptibilities in crystals can be enhanced and understood through nontrivial topological invariants and quantum geometry, using one-dimensional $\pi$-conjugated chains as representative model systems. First, we show that the crystalline-symmetry-protected topology of these chains imposes a lower bound on their quantum metric and hyperpolarizabilities. Second, we employ numerical simulations to reveal the tunability of non-linear, quantum geometry-driven optical responses in various one-dimensional crystals in which band topology can be externally controlled. Third, we develop a semiclassical picture to deliver an intuitive understanding of these effects. Our findings offer a firm interpretation of otherwise elusive experimental observations of colossal hyperpolarizabilities and establish guidelines for designing topological materials of any dimensionality with enhanced non-linear optical properties.
Related papers
- Gauge-invariant projector calculus for quantum state geometry and applications to observables in crystals [44.99833362998488]
More complex aspects of geometry emerge in properties linking multiple bands, such as optical responses.
We identify novel multi-state geometrical invariants using an explicitly gauge-invariant formalism based on projection operators.
We provide more detail on the projector formalism and the geometrical invariants arising in the vicinity of a specific value of crystal momentum.
arXiv Detail & Related papers (2024-12-04T19:00:00Z) - The multi-state geometry of shift current and polarization [44.99833362998488]
We employ quantum state projectors to develop an explicitly gauge-invariant formalism.
We provide a simple expression for the shift current that resolves its precise relation to the moments of electronic polarization.
We reveal its decomposition into the sum of the skewness of the occupied states and intrinsic multi-state geometry.
arXiv Detail & Related papers (2024-09-24T18:00:02Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Quantized Integrated Shift Effect in Multigap Topological Phases [0.0]
We recast the quantization in terms of the integrated torsion tensor and the non-Abelian Berry connection constituting Chern-Simons forms.
Our findings provide another quantized electromagnetic dc response due to the nontrivial band topology.
arXiv Detail & Related papers (2024-02-20T18:56:17Z) - Directional spontaneous emission in photonic crystal slabs [49.1574468325115]
Spontaneous emission is a fundamental out-of-equilibrium process in which an excited quantum emitter relaxes to the ground state due to quantum fluctuations.
One way to modify these photon-mediated interactions is to alter the dipole radiation patterns of the emitter, e.g., by placing photonic crystals near them.
Our study delves into the interaction between these directional emission patterns and the aforementioned variables, revealing the untapped potential to fine-tune collective quantum optical phenomena.
arXiv Detail & Related papers (2023-12-04T15:35:41Z) - Designing Nonlinear Photonic Crystals for High-Dimensional Quantum State
Engineering [11.706425337269105]
We propose a novel, physically-constrained and differentiable approach for the generation of D-dimensional qudit states in quantum optics.
We show, theoretically and experimentally, how to generate maximally entangled states in the spatial degree of freedom.
The learning of NLPC structures offers a promising new avenue for shaping and controlling arbitrary quantum states.
arXiv Detail & Related papers (2023-04-13T20:26:18Z) - All-optical probe of three-dimensional topological insulators based on
high-harmonic generation by circularly-polarized laser fields [3.2168123566725897]
We report the observation of a novel nonlinear optical response from the prototypical three-dimensional topological insulator Bi$$Se$_3$ through the process of high-order harmonic generation.
The implications are in ultrafast probing of topological phase transitions, light-field driven dissipationless electronics, and quantum computation.
arXiv Detail & Related papers (2021-09-30T17:35:10Z) - Protecting Quantum Superposition and Entanglement with Photonic
Higher-Order Topological Crystalline Insulator [10.847084154651236]
We present an experimental observation of photonic higher-order topological crystalline insulator and its topological protection to quantum superposition and entanglement in a two-dimensional lattice.
The single-photon dynamics and the protected entanglement reveal an intrinsic topological protection mechanism isolating multi-partite quantum states from diffusion-induced decoherence.
arXiv Detail & Related papers (2020-06-14T18:03:28Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.