Chiral Cavity Quantum Electrodynamics
- URL: http://arxiv.org/abs/2109.06033v1
- Date: Thu, 9 Sep 2021 22:26:36 GMT
- Title: Chiral Cavity Quantum Electrodynamics
- Authors: John Clai Owens, Margaret G. Panetta, Brendan Saxberg, Gabrielle
Roberts, Srivatsan Chakram, Ruichao Ma, Andrei Vrajitoarea, Jonathan Simon,
and David Schuster
- Abstract summary: We explore for the first time cavity quantum electrodynamics of a transmon qubit in the topological vacuum of a Harper-Hofstadter topological lattice.
We spectroscopically resolve the individual bulk and edge modes of this lattice, detect vacuum-stimulated Rabi oscillations between the excited transmon and each mode, and thereby measure the synthetic-vacuum-induced Lamb shift of the transmon.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cavity quantum electrodynamics, which explores the granularity of light by
coupling a resonator to a nonlinear emitter, has played a foundational role in
the development of modern quantum information science and technology. In
parallel, the field of condensed matter physics has been revolutionized by the
discovery of underlying topological robustness in the face of disorder, often
arising from the breaking of time-reversal symmetry, as in the case of the
quantum Hall effect. In this work, we explore for the first time cavity quantum
electrodynamics of a transmon qubit in the topological vacuum of a
Harper-Hofstadter topological lattice. To achieve this, we assemble a square
lattice of niobium superconducting resonators and break time-reversal symmetry
by introducing ferrimagnets before coupling the system to a single transmon
qubit. We spectroscopically resolve the individual bulk and edge modes of this
lattice, detect vacuum-stimulated Rabi oscillations between the excited
transmon and each mode, and thereby measure the synthetic-vacuum-induced Lamb
shift of the transmon. Finally, we demonstrate the ability to employ the
transmon to count individual photons within each mode of the topological band
structure. This work opens the field of chiral quantum optics experiment,
suggesting new routes to topological many-body physics and offering unique
approaches to backscatter-resilient quantum communication.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - A dissipation-induced superradiant transition in a strontium cavity-QED system [0.0]
In cavity quantum electrodynamics (QED), emitters and a resonator are coupled together to enable precise studies of quantum light-matter interactions.
Here we provide an observation of the continuous superradiant phase transition predicted in the CRF model using an ensemble of ultracold $88$Sr atoms.
Our observations are a first step towards finer control of driven-dissipative systems, which have been predicted to generate quantum states.
arXiv Detail & Related papers (2024-08-20T18:00:00Z) - Dynamics and Resonance Fluorescence from a Superconducting Artificial Atom Doubly Driven by Quantized and Classical Fields [11.961708412157757]
Experimental demonstration of resonance fluorescence in a two-level superconducting artificial atom under two driving fields coupled to a detuned cavity.
The device consists of a transmon qubit strongly coupled to a one-dimensional transmission line and a coplanar waveguide resonator.
arXiv Detail & Related papers (2024-03-17T08:48:30Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Non-Hermitian topological quantum states in a reservoir-engineered
transmon chain [0.0]
We show that a non-Hermitian quantum phase can be realized in a reservoir-engineered transmon chain.
We show that genuine quantum effects are observable in this system via robust and slowly decaying long-range quantum entanglement of the topological end modes.
arXiv Detail & Related papers (2022-10-06T15:21:21Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Quantum susceptibilities in time-domain sampling of electric field
fluctuations [0.0]
We develop a microscopic quantum theory of the electro-optic process using an ensemble of non-interacting three-level systems.
We show that the quantum contributions can be substantial and might even dominate the total response.
In a complementary regime, electro-optic sampling can serve as a spectroscopic tool to study the pure quantum susceptibilities of materials.
arXiv Detail & Related papers (2021-03-13T13:22:34Z) - Floquet engineering and simulating exceptional rings with a quantum spin
system [6.746560936185888]
Time-periodic driving in the form of coherent radiation provides powerful tool for the manipulation of topological materials or synthetic quantum matter.
We propose a scheme to realize non-Hermitian semimetals exhibiting exceptional rings in the spectra through Floquet engineering.
arXiv Detail & Related papers (2020-05-06T10:16:20Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.