論文の概要: LinkSAGE: Optimizing Job Matching Using Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2402.13430v1
- Date: Tue, 20 Feb 2024 23:49:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-22 17:45:35.625930
- Title: LinkSAGE: Optimizing Job Matching Using Graph Neural Networks
- Title(参考訳): LinkSAGE: グラフニューラルネットワークによるジョブマッチングの最適化
- Authors: Ping Liu, Haichao Wei, Xiaochen Hou, Jianqiang Shen, Shihai He, Kay
Qianqi Shen, Zhujun Chen, Fedor Borisyuk, Daniel Hewlett, Liang Wu, Srikant
Veeraraghavan, Alex Tsun, Chengming Jiang, Wenjing Zhang
- Abstract要約: 本稿では、グラフニューラルネットワーク(GNN)を大規模パーソナライズされたジョブマッチングシステムに統合する革新的なフレームワークであるLinkSAGEを紹介する。
当社のアプローチは、数十億のノードとエッジを持つ、業界最大の、そして最も複雑な、新しい求人市場グラフに乗じています。
LinkSAGEの重要なイノベーションは、そのトレーニングと提供の方法論である。これは、不均一で進化するグラフ上の帰納的グラフ学習とエンコーダ-デコーダGNNモデルとを効果的に組み合わせている。
- 参考スコア(独自算出の注目度): 12.088731514483104
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present LinkSAGE, an innovative framework that integrates Graph Neural
Networks (GNNs) into large-scale personalized job matching systems, designed to
address the complex dynamics of LinkedIns extensive professional network. Our
approach capitalizes on a novel job marketplace graph, the largest and most
intricate of its kind in industry, with billions of nodes and edges. This graph
is not merely extensive but also richly detailed, encompassing member and job
nodes along with key attributes, thus creating an expansive and interwoven
network. A key innovation in LinkSAGE is its training and serving methodology,
which effectively combines inductive graph learning on a heterogeneous,
evolving graph with an encoder-decoder GNN model. This methodology decouples
the training of the GNN model from that of existing Deep Neural Nets (DNN)
models, eliminating the need for frequent GNN retraining while maintaining
up-to-date graph signals in near realtime, allowing for the effective
integration of GNN insights through transfer learning. The subsequent nearline
inference system serves the GNN encoder within a real-world setting,
significantly reducing online latency and obviating the need for costly
real-time GNN infrastructure. Validated across multiple online A/B tests in
diverse product scenarios, LinkSAGE demonstrates marked improvements in member
engagement, relevance matching, and member retention, confirming its
generalizability and practical impact.
- Abstract(参考訳): 我々は、グラフニューラルネットワーク(GNN)を大規模パーソナライズされたジョブマッチングシステムに統合する革新的なフレームワークであるLinkSAGEを紹介します。
当社のアプローチは、数十億のノードとエッジを持つ、業界最大の、そして最も複雑な、新しい求人市場グラフに乗じています。
このグラフは単に広範であるだけでなく、豊富な詳細であり、キー属性とともにメンバとジョブノードを包含している。
LinkSAGEの重要な革新はトレーニングと提供の方法論である。これは、不均一で進化するグラフ上の帰納的グラフ学習とエンコーダ-デコーダGNNモデルを効果的に組み合わせている。
この手法は、GNNモデルのトレーニングを既存のDeep Neural Nets(DNN)モデルから切り離し、最新のグラフ信号をほぼリアルタイムで維持しながら、GNNの再トレーニングを頻繁に行う必要をなくし、転送学習によるGNN洞察の効果的な統合を可能にする。
その後のニアライン推論システムは、GNNエンコーダを現実の環境で提供し、オンラインのレイテンシを大幅に低減し、コストのかかるリアルタイムGNNインフラの必要性を回避している。
さまざまな製品シナリオにおける複数のオンラインA/Bテストで検証されたLinkSAGEでは、メンバのエンゲージメント、関連性マッチング、メンバの保持が著しく改善され、その一般化性と実践的な影響が確認されている。
関連論文リスト
- DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - Attentional Graph Neural Networks for Robust Massive Network
Localization [20.416879207269446]
グラフニューラルネットワーク(GNN)は、機械学習における分類タスクの顕著なツールとして登場した。
本稿では,GNNとアテンション機構を統合し,ネットワークローカライゼーションという難解な非線形回帰問題に対処する。
我々はまず,厳密な非視線(NLOS)条件下でも例外的な精度を示すグラフ畳み込みネットワーク(GCN)に基づく新しいネットワークローカライゼーション手法を提案する。
論文 参考訳(メタデータ) (2023-11-28T15:05:13Z) - Label Deconvolution for Node Representation Learning on Large-scale
Attributed Graphs against Learning Bias [75.44877675117749]
本稿では,GNNの逆写像に対する新しい,スケーラブルな近似による学習バイアスを軽減するために,ラベルの効率的な正規化手法,すなわちラベルのデコンボリューション(LD)を提案する。
実験では、LDはOpen Graphデータセットのベンチマークで最先端のメソッドを大幅に上回っている。
論文 参考訳(メタデータ) (2023-09-26T13:09:43Z) - Information Flow in Graph Neural Networks: A Clinical Triage Use Case [49.86931948849343]
グラフニューラルネットワーク(GNN)は、マルチモーダルグラフとマルチリレーショナルグラフを処理する能力によって、医療やその他の領域で人気を集めている。
GNNにおける埋め込み情報のフローが知識グラフ(KG)におけるリンクの予測に与える影響について検討する。
以上の結果から,ドメイン知識をGNN接続に組み込むことで,KGと同じ接続を使用する場合や,制約のない埋め込み伝搬を行う場合よりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2023-09-12T09:18:12Z) - ABC: Aggregation before Communication, a Communication Reduction
Framework for Distributed Graph Neural Network Training and Effective
Partition [0.0]
グラフニューラルネットワーク(GNN)は、グラフ構造データに適したニューラルモデルであり、グラフ構造データの学習表現において優れた性能を示している。
本稿では,分散GNN訓練における通信複雑性について検討する。
グラフ変換プロセスの未知によりエッジ配置を制御できない動的グラフの場合,新しいパーティションパラダイムは特に理想的であることを示す。
論文 参考訳(メタデータ) (2022-12-11T04:54:01Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
本稿では,グラフ間のGNNの事前学習プロセスの監視を目的とした,MentorGNNというエンドツーエンドモデルを提案する。
我々は、事前学習したGNNの一般化誤差に自然かつ解釈可能な上限を導出することにより、関係データ(グラフ)に対するドメイン適応の問題に新たな光を当てた。
論文 参考訳(メタデータ) (2022-08-21T15:12:08Z) - Scaling Graph-based Deep Learning models to larger networks [2.946140899052065]
Graph Neural Networks (GNN)は、ネットワーク制御と管理のために商用製品に統合される可能性を示している。
本稿では,リンク容量の増大やリンクトラフィックの集約など,大規模ネットワークに効果的にスケール可能なGNNベースのソリューションを提案する。
論文 参考訳(メタデータ) (2021-10-04T09:04:19Z) - IGNNITION: Bridging the Gap Between Graph Neural Networks and Networking
Systems [4.1591055164123665]
本稿では,ネットワークシステムのためのグラフニューラルネットワーク(GNN)の高速プロトタイピングを可能にする,新しいオープンソースフレームワークIGNNITIONを提案する。
IGNNITIONは、GNNの背後にある複雑さを隠す直感的な高レベルの抽象化に基づいている。
IGNNITIONが生成するGNNモデルは,ネイティブ実装の精度と性能の点で同等であることを示す。
論文 参考訳(メタデータ) (2021-09-14T14:28:21Z) - Analyzing the Performance of Graph Neural Networks with Pipe Parallelism [2.269587850533721]
ノードやエッジの分類やリンクの予測といったタスクで大きな成功を収めたグラフニューラルネットワーク(GNN)に注目した。
グラフ技術の進歩には,大規模ネットワーク処理のための新たなアプローチが必要である。
私たちは、ディープラーニングコミュニティで成功したと知られている既存のツールとフレームワークを使用して、GNNを並列化する方法を研究します。
論文 参考訳(メタデータ) (2020-12-20T04:20:38Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - GPT-GNN: Generative Pre-Training of Graph Neural Networks [93.35945182085948]
グラフニューラルネットワーク(GNN)は、グラフ構造化データのモデリングにおいて強力であることが示されている。
生成事前学習によりGNNを初期化するためのGPT-GNNフレームワークを提案する。
GPT-GNNは、様々な下流タスクにおいて、事前トレーニングを最大9.1%行うことなく、最先端のGNNモデルを大幅に上回ることを示す。
論文 参考訳(メタデータ) (2020-06-27T20:12:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。