論文の概要: Analyzing the Performance of Graph Neural Networks with Pipe Parallelism
- arxiv url: http://arxiv.org/abs/2012.10840v2
- Date: Mon, 5 Apr 2021 16:59:33 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-01 09:09:44.669354
- Title: Analyzing the Performance of Graph Neural Networks with Pipe Parallelism
- Title(参考訳): パイプ並列性を用いたグラフニューラルネットワークの性能解析
- Authors: Matthew T. Dearing, Xiaoyan Wang
- Abstract要約: ノードやエッジの分類やリンクの予測といったタスクで大きな成功を収めたグラフニューラルネットワーク(GNN)に注目した。
グラフ技術の進歩には,大規模ネットワーク処理のための新たなアプローチが必要である。
私たちは、ディープラーニングコミュニティで成功したと知られている既存のツールとフレームワークを使用して、GNNを並列化する方法を研究します。
- 参考スコア(独自算出の注目度): 2.269587850533721
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many interesting datasets ubiquitous in machine learning and deep learning
can be described via graphs. As the scale and complexity of graph-structured
datasets increase, such as in expansive social networks, protein folding,
chemical interaction networks, and material phase transitions, improving the
efficiency of the machine learning techniques applied to these is crucial. In
this study, we focus on Graph Neural Networks (GNN) that have found great
success in tasks such as node or edge classification and link prediction.
However, standard GNN models have scaling limits due to necessary recursive
calculations performed through dense graph relationships that lead to memory
and runtime bottlenecks. While new approaches for processing larger networks
are needed to advance graph techniques, and several have been proposed, we
study how GNNs could be parallelized using existing tools and frameworks that
are known to be successful in the deep learning community. In particular, we
investigate applying pipeline parallelism to GNN models with GPipe, introduced
by Google in 2018.
- Abstract(参考訳): 機械学習やディープラーニングにおいてユビキタスな多くの興味深いデータセットは、グラフを通じて記述することができる。
拡張型ソーシャルネットワーク、タンパク質折り畳み、化学相互作用ネットワーク、物質相転移など、グラフ構造データセットの規模と複雑さが増大するにつれて、これらに適用する機械学習技術の効率が向上する。
本研究では,ノードやエッジの分類やリンク予測といったタスクで大きな成功を収めたグラフニューラルネットワーク(GNN)に注目した。
しかし、標準のGNNモデルは、メモリや実行時のボトルネックにつながる高密度なグラフ関係を通じて必要再帰的な計算を行うため、スケーリングの制限がある。
グラフ技術の進歩には,大規模ネットワーク処理のための新たなアプローチが必要であり,いくつか提案されているが,ディープラーニングコミュニティで成功していると知られている既存のツールやフレームワークを用いてgnnを並列化する方法について検討する。
特に、2018年にGoogleが導入したGPipeによるGNNモデルに対するパイプライン並列性の適用について検討する。
関連論文リスト
- TANGNN: a Concise, Scalable and Effective Graph Neural Networks with Top-m Attention Mechanism for Graph Representation Learning [7.879217146851148]
本稿では,Top-mアテンション機構アグリゲーションコンポーネントと近傍アグリゲーションコンポーネントを統合した,革新的なグラフニューラルネットワーク(GNN)アーキテクチャを提案する。
提案手法の有効性を評価するため,提案手法をGNN分野において未探索の新たな課題である引用感情予測に適用した。
論文 参考訳(メタデータ) (2024-11-23T05:31:25Z) - Graph Coordinates and Conventional Neural Networks -- An Alternative for
Graph Neural Networks [0.10923877073891444]
メッセージパッシングGNNの新たな代替手段として,Topology Coordinate Neural Network (TCNN) と Directional Virtual Coordinate Neural Network (DVCNN) を提案する。
TCNNとDVCNNは、メッセージパッシングGNNの競合や優れたパフォーマンスを達成する。
私たちの研究は、グラフベースの機械学習のためのテクニックのツールボックスを拡張します。
論文 参考訳(メタデータ) (2023-12-03T10:14:10Z) - A Comprehensive Study on Large-Scale Graph Training: Benchmarking and
Rethinking [124.21408098724551]
グラフニューラルネットワーク(GNN)の大規模グラフトレーニングは、非常に難しい問題である
本稿では,既存の問題に対処するため,EnGCNという新たなアンサンブルトレーニング手法を提案する。
提案手法は,大規模データセット上でのSOTA(State-of-the-art)の性能向上を実現している。
論文 参考訳(メタデータ) (2022-10-14T03:43:05Z) - Automatic Relation-aware Graph Network Proliferation [182.30735195376792]
GNNを効率的に検索するためのARGNP(Automatic Relation-Aware Graph Network Proliferation)を提案する。
これらの操作は階層的なノード/リレーショナル情報を抽出し、グラフ上のメッセージパッシングのための異方的ガイダンスを提供する。
4つのグラフ学習タスクのための6つのデータセットの実験により、我々の手法によって生成されたGNNは、現在最先端の手作りおよび検索に基づくGNNよりも優れていることが示された。
論文 参考訳(メタデータ) (2022-05-31T10:38:04Z) - Parallel and Distributed Graph Neural Networks: An In-Depth Concurrency
Analysis [28.464210819376593]
グラフニューラルネットワーク(GNN)は、ディープラーニングにおいて最も強力なツールのひとつだ。
ノード分類、グラフ分類、リンク予測などの非構造化ネットワーク上の複雑な問題を高精度に解決する。
しかし、GNNの推論とトレーニングは複雑であり、不規則なグラフ処理の特徴と密度と正規な計算を一意に組み合わせている。
この複雑さは、現代の大規模並列アーキテクチャ上でGNNを効率的に実行することを非常に困難にしている。
論文 参考訳(メタデータ) (2022-05-19T17:11:45Z) - Overcoming Oversmoothness in Graph Convolutional Networks via Hybrid
Scattering Networks [11.857894213975644]
本稿では,従来のGCNフィルタと幾何散乱変換を用いて定義された帯域通過フィルタを組み合わせたハイブリッドグラフニューラルネットワーク(GNN)フレームワークを提案する。
理論的には, グラフからの構造情報を活用するために散乱フィルタの相補的な利点が確立され, 実験では様々な学習課題における手法の利点が示された。
論文 参考訳(メタデータ) (2022-01-22T00:47:41Z) - Increase and Conquer: Training Graph Neural Networks on Growing Graphs [116.03137405192356]
本稿では,このグラフからBernoulliをサンプリングしたグラフ上でGNNをトレーニングすることで,WNN(Graphon Neural Network)を学習する問題を考察する。
これらの結果から着想を得た大規模グラフ上でGNNを学習するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-07T15:05:59Z) - Hierarchical Message-Passing Graph Neural Networks [12.207978823927386]
本稿では,新しい階層型メッセージパッシンググラフニューラルネットワークフレームワークを提案する。
鍵となるアイデアは、フラットグラフ内のすべてのノードをマルチレベルなスーパーグラフに再編成する階層構造を生成することである。
階層型コミュニティ対応グラフニューラルネットワーク(HC-GNN)と呼ばれる,このフレームワークを実装した最初のモデルを提案する。
論文 参考訳(メタデータ) (2020-09-08T13:11:07Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z) - Geometrically Principled Connections in Graph Neural Networks [66.51286736506658]
我々は、幾何学的深層学習の新興分野におけるイノベーションの原動力は、幾何が依然として主要な推進力であるべきだと論じている。
グラフニューラルネットワークとコンピュータグラフィックスとデータ近似モデルとの関係:放射基底関数(RBF)
完全連結層とグラフ畳み込み演算子を組み合わせた新しいビルディングブロックであるアフィンスキップ接続を導入する。
論文 参考訳(メタデータ) (2020-04-06T13:25:46Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
我々はグラフ信号処理を活用してグラフニューラルネットワーク(GNN)の表現空間を特徴付ける。
GNNにおけるグラフ畳み込みフィルタの役割について議論し、そのようなフィルタで構築されたアーキテクチャは、置換同値の基本的な性質と位相変化に対する安定性を持つことを示す。
また,ロボット群に対するリコメンデータシステムや分散型コントローラの学習におけるGNNの利用について検討した。
論文 参考訳(メタデータ) (2020-03-08T13:02:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。